Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 593(7857): 90-94, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883743

RESUMO

Africa is forecasted to experience large and rapid climate change1 and population growth2 during the twenty-first century, which threatens the world's second largest rainforest. Protecting and sustainably managing these African forests requires an increased understanding of their compositional heterogeneity, the environmental drivers of forest composition and their vulnerability to ongoing changes. Here, using a very large dataset of 6 million trees in more than 180,000 field plots, we jointly model the distribution in abundance of the most dominant tree taxa in central Africa, and produce continuous maps of the floristic and functional composition of central African forests. Our results show that the uncertainty in taxon-specific distributions averages out at the community level, and reveal highly deterministic assemblages. We uncover contrasting floristic and functional compositions across climates, soil types and anthropogenic gradients, with functional convergence among types of forest that are floristically dissimilar. Combining these spatial predictions with scenarios of climatic and anthropogenic global change suggests a high vulnerability of the northern and southern forest margins, the Atlantic forests and most forests in the Democratic Republic of the Congo, where both climate and anthropogenic threats are expected to increase sharply by 2085. These results constitute key quantitative benchmarks for scientists and policymakers to shape transnational conservation and management strategies that aim to provide a sustainable future for central African forests.


Assuntos
Aquecimento Global/estatística & dados numéricos , Floresta Úmida , Árvores/classificação , Aclimatação , África Central , Conjuntos de Dados como Assunto , Flores , Atividades Humanas , Humanos , Crescimento Demográfico , Estações do Ano , Desenvolvimento Sustentável , Temperatura , Árvores/crescimento & desenvolvimento
2.
Nature ; 579(7797): 80-87, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132693

RESUMO

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Clima Tropical , África , Atmosfera/química , Biomassa , Brasil , Secas , História do Século XX , História do Século XXI , Modelos Teóricos , Temperatura
3.
Am J Bot ; 111(4): e16320, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38629307

RESUMO

Marantaceae forests are tropical rainforests characterized by a continuous understory layer of perennial giant herbs and a near absence of tree regeneration. Although widespread in West-Central Africa, Marantaceae forests have rarely been considered in the international literature. Yet, they pose key challenges and opportunities for theoretical ecology that transcend the borders of the continent. Specifically, we ask in this review whether open Marantaceae forests and dense closed-canopy forests can be considered as one of the few documented examples of alternative stable states in tropical forests. First, we introduce the different ecological factors that have been posited to drive Marantaceae forests (climate, soil, historical and recent anthropogenic pressures, herbivores) and develop the different hypotheses that have been suggested to explain how Marantaceae forests establish in relation with other vegetation types (understory invasion, early succession after disturbance, and intermediate successional stage). Then, we review the underlying ecological mechanisms that can explain the stability of Marantaceae forests in the long term (tree recruitment inhibition, promotion of and resilience to fire, adaptive reproduction, maintenance by megaherbivores). Although some uncertainties remain and call for further empirical and theoretical research, we found converging evidence that Marantaceae forests are associated with an ecological succession that has been deflected or arrested. If verified, Marantaceae forests may provide a useful model to understand critical transitions in forest ecosystems, which is of particular relevance to achieve sustainable forest management and mitigate global climate change.


Assuntos
Florestas , Floresta Úmida , Árvores/fisiologia , África
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001597

RESUMO

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Assuntos
Mudança Climática , Floresta Úmida , Árvores/crescimento & desenvolvimento , Clima Tropical , Ciclo do Carbono , Secas , El Niño Oscilação Sul , Temperatura Alta , Humanos , Estações do Ano
5.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35703577

RESUMO

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Assuntos
Florestas , Árvores , Biomassa , Carbono/metabolismo , Ciclo do Carbono , Ecossistema , Árvores/fisiologia
6.
Am J Bot ; 107(3): 498-509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32200549

RESUMO

PREMISE: Few studies have addressed the evolutionary history of tree species from African savannahs. Afzelia contains economically important timber species, including two species widely distributed in African savannahs: A. africana in the Sudanian region and A. quanzensis in the Zambezian region. We aimed to infer whether these species underwent range fragmentation and/or demographic changes, possibly reflecting how savannahs responded to Quaternary climate changes. METHODS: We characterized the genetic diversity and structure of these species across their distribution ranges using nuclear microsatellites (SSRs) and genotyping-by-sequencing (GBS) markers. Six SSR loci were genotyped in 241 A. africana and 113 A. quanzensis individuals, while 2800 high-quality single nucleotide polymorphisms (SNPs) were identified in 30 A. africana individuals. RESULTS: Both species appeared to be mainly outcrossing. The kinship between individuals decayed with the logarithm of the distance at similar rates across species and markers, leading to relatively small Sp statistics (0.0056 for SSR and 0.0054 for SNP in A. africana, 0.0075 for SSR in A. quanzensis). The patterns were consistent with isolation by distance expectations in the absence of large-scale geographic gradients. Bayesian clustering of SSR genotypes did not detect genetic clusters within species. In contrast, SNP data resolved intraspecific genetic clusters in A. africana, illustrating the higher resolving power of GBS. However, these clusters revealed low levels of differentiation and no clear geographical entities, so that they were interpreted as resulting from the isolation by distance pattern rather than from past population fragmentation. CONCLUSIONS: These results suggest that populations have remained connected throughout the large, continuous savannah landscapes. The absence of clear phylogeographic discontinuities, also found in a few other African savannah trees, indicates that their distribution ranges have not been significantly fragmented during the climatic oscillations of the Pleistocene, in contrast to patterns commonly found in African rainforest trees.


Assuntos
Fabaceae , Metagenômica , Teorema de Bayes , Variação Genética , Genética Populacional , Humanos , Repetições de Microssatélites , Filogeografia
7.
Mol Ecol ; 28(12): 3119-3134, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31141237

RESUMO

The natural regeneration of tree species depends on seed and pollen dispersal. To assess whether limited dispersal could be critical for the sustainability of selective logging practices, we performed parentage analyses in two Central African legume canopy species displaying contrasted floral and fruit traits: Distemonanthus benthamianus and Erythrophleum suaveolens. We also developed new tools linking forward dispersal kernels with backward migration rates to better characterize long-distance dispersal. Much longer pollen dispersal in D. benthamianus (mean distance dp  = 700 m, mp  = 52% immigration rate in 6 km2 plot, s = 7% selfing rate) than in E. suaveolens (dp  = 294 m, mp  = 22% in 2 km2 plot, s = 20%) might reflect different insect pollinators. At a local scale, secondary seed dispersal by vertebrates led to larger seed dispersal distances in the barochorous E. suaveolens (ds  = 175 m) than in the wind-dispersed D. benthamianus (ds  = 71 m). Yet, seed dispersal appeared much more fat-tailed in the latter species (15%-25% seeds dispersing >500 m), putatively due to storm winds (papery pods). The reproductive success was correlated to trunk diameter in E. suaveolens and crown dominance in D. benthamianus. Contrary to D. benthamianus, E. suaveolens underwent significant assortative mating, increasing further the already high inbreeding of its juveniles due to selfing, which seems offset by strong inbreeding depression. To achieve sustainable exploitation, seed and pollen dispersal distances did not appear limiting, but the natural regeneration of E. suaveolens might become insufficient if all trees above the minimum legal cutting diameter were exploited. This highlights the importance of assessing the diameter structure of reproductive trees for logged species.


Assuntos
Fabaceae/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Reprodução/genética , Dispersão de Sementes/genética , Fabaceae/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Fluxo Gênico , Genética Populacional , Endogamia , Repetições de Microssatélites/genética , Polinização/genética , Reprodução/fisiologia , Sementes/genética , Árvores/genética , Árvores/crescimento & desenvolvimento , Vento
8.
Mol Phylogenet Evol ; 120: 83-93, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29222064

RESUMO

Tropical rain forests support a remarkable diversity of tree species, questioning how and when this diversity arose. The genus Guibourtia (Fabaceae, Detarioideae), characterized by two South American and 13 African tree species growing in various tropical biomes, is an interesting model to address the role of biogeographic processes and adaptation to contrasted environments on species diversification. Combining whole plastid genome sequencing and morphological characters analysis, we studied the timing of speciation and diversification processes in Guibourtia through molecular dating and ancestral habitats reconstruction. All species except G. demeusei and G. copallifera appear monophyletic. Dispersal from Africa to America across the Atlantic Ocean is the most plausible hypothesis to explain the occurrence of Neotropical Guibourtia species, which diverged ca. 11.8 Ma from their closest African relatives. The diversification of the three main clades of African Guibourtia is concomitant to Miocene global climate changes, highlighting pre-Quaternary speciation events. These clades differ by their reproductive characters, which validates the three subgenera previously described: Pseudocopaiva, Guibourtia and Gorskia. Within most monophyletic species, plastid lineages start diverging from each other during the Pliocene or early Pleistocene, suggesting that these species already arose during this period. The multiple transitions between rain forests and dry forests/savannahs inferred here through the plastid phylogeny in each Guibourtia subgenus address thus new questions about the role of phylogenetic relationships in shaping ecological niche and morphological similarity among taxa.


Assuntos
Fabaceae/anatomia & histologia , Fabaceae/classificação , Filogenia , Clima Tropical , África , Oceano Atlântico , Evolução Molecular , Geografia , Funções Verossimilhança , Plastídeos/genética , Análise de Componente Principal , Floresta Úmida , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
9.
Heredity (Edinb) ; 120(6): 547-561, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29279603

RESUMO

Paleo-environmental reconstructions show that the distribution of tropical African rain forests was affected by Quaternary climate changes. They suggest that the Dahomey Gap (DG)-the savanna corridor that currently separates Upper Guinean (UG, West Africa) and Lower Guinean (LG, western Central Africa) rain forest blocks-was forested during the African Humid Holocene period (from at least 9 ka till 4.5 ka), and possibly during other interglacial periods, while an open vegetation developed in the DG under drier conditions, notably during glacial maxima. Nowadays, relics of semi-deciduous forests containing UG and LG forest species are still present within the DG. We used one of these species, the pioneer tree Terminalia superba (Combretaceae), to study past forest fragmentation in the DG and its impact on infraspecific biodiversity. A Bayesian clustering analysis of 299 individuals genotyped at 14 nuclear microsatellites revealed five parapatric genetic clusters (UG, DG, and three in LG) with low to moderate genetic differentiation (Fst from 0.02 to 0.24). Approximate Bayesian Computation analyses inferred a demographic bottleneck around the penultimate glacial period in all populations. They also supported an origin of the DG population by admixture of UG and LG populations around 54,000 (27,600-161,000) years BP, thus before the Last Glacial Maximum. These results contrast with those obtained on Distemonanthus benthamianus where the DG population seems to originate from the Humid Holocene period. We discuss these differences in light of the ecology of each species. Our results challenge the simplistic view linking population fragmentation/expansion with glacial/interglacial periods in African forest species.


Assuntos
Biodiversidade , Ecossistema , Floresta Úmida , Terminalia , Teorema de Bayes , Variação Genética , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites , Filogeografia , Dinâmica Populacional , Terminalia/classificação , Terminalia/genética
10.
Ecol Appl ; 28(5): 1273-1281, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660227

RESUMO

Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even negatively to the carbon uptake at the stand level.


Assuntos
Biomassa , Carbono/metabolismo , Florestas , Árvores/fisiologia , República Centro-Africana , Agricultura Florestal , Longevidade , Dinâmica Populacional , Árvores/crescimento & desenvolvimento , Clima Tropical
11.
Proc Natl Acad Sci U S A ; 112(24): 7472-7, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034279

RESUMO

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


Assuntos
Biodiversidade , Florestas , Árvores , Clima Tropical , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecossistema , Filogeografia , Floresta Úmida , Especificidade da Espécie , Estatísticas não Paramétricas , Árvores/classificação
12.
Mol Ecol ; 26(19): 5279-5291, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734064

RESUMO

Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400-ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (t = 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp  = 0.77). An average of 4.76 effective pollen donors (Nep ) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen- and seed-mediated gene flow is further supported by the weak, fine-scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg ) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij  = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij  = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.


Assuntos
Genética Populacional , Meliaceae/genética , Polinização , Dispersão de Sementes , Camarões , Fluxo Gênico , Variação Genética , Genótipo , Meliaceae/fisiologia , Repetições de Microssatélites , Modelos Genéticos , Pólen , Floresta Úmida , Árvores/genética , Árvores/fisiologia
13.
Mol Phylogenet Evol ; 107: 270-281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825871

RESUMO

Polyploidy has rarely been documented in rain forest trees but it has recently been found in African species of the genus Afzelia (Leguminosae), which is composed of four tetraploid rain forest species and two diploid dry forest species. The genus Afzelia thus provides an opportunity to examine how and when polyploidy and habitat shift occurred in Africa, and whether they are associated. In this study, we combined three plastid markers (psbA, trnL, ndhF), two nuclear markers (ribosomal ITS and the single-copy PEPC E7 gene), plastomes (obtained by High Throughput Sequencing) and morphological traits, with an extensive taxonomic and geographic sampling to explore the evolutionary history of Afzelia. Both nuclear DNA and morphological vegetative characters separated diploid from tetraploid lineages. Although the two African diploid species were well differentiated genetically and morphologically, the relationships among the tetraploid species were not resolved. In contrast to the nuclear markers, plastid markers revealed that one of the diploid species forms a well-supported clade with the tetraploids, suggesting historical hybridisation, possibly in relation with genome duplication (polyploidization) and habitat shift from dry to rain forests. Molecular dating based on fossil-anchored gene phylogenies indicates that extant Afzelia started diverging c. 14.5 or 20Ma while extant tetraploid species started diverging c. 7.0 or 9.4Ma according to plastid and nuclear DNA, respectively. Additional studies of tropical polyploid plants are needed to assess whether the ploidy-habitat association observed in African Afzelia would reflect a role of polyploidization in niche divergence in the tropics.


Assuntos
Evolução Biológica , Ecossistema , Fabaceae/classificação , Fabaceae/genética , Poliploidia , Árvores/classificação , África , DNA de Plantas/genética , Geografia , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
14.
BMC Evol Biol ; 16(1): 259, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903256

RESUMO

BACKGROUND: Species delimitation in closely related plant taxa can be challenging because (i) reproductive barriers are not always congruent with morphological differentiation, (ii) use of plastid sequences might lead to misinterpretation, (iii) rare species might not be sampled. We revisited molecular-based species delimitation in the African genus Milicia, currently divided into M. regia (West Africa) and M. excelsa (from West to East Africa). We used 435 samples collected in West, Central and East Africa. We genotyped SNP and SSR loci to identify genetic clusters, and sequenced two plastid regions (psbA-trnH, trnC-ycf6) and a nuclear gene (At103) to confirm species' divergence and compare species delimitation methods. We also examined whether ecological niche differentiation was congruent with sampled genetic structure. RESULTS: West African M. regia, West African and East African M. excelsa samples constituted three well distinct genetic clusters according to SNPs and SSRs. In Central Africa, two genetic clusters were consistently inferred by both types of markers, while a few scattered samples, sympatric with the preceding clusters but exhibiting leaf traits of M. regia, were grouped with the West African M. regia cluster based on SNPs or formed a distinct cluster based on SSRs. SSR results were confirmed by sequence data from the nuclear region At103 which revealed three distinct 'Fields For Recombination' corresponding to (i) West African M. regia, (ii) Central African samples with leaf traits of M. regia, and (iii) all M. excelsa samples. None of the plastid sequences provide indication of distinct clades of the three species-like units. Niche modelling techniques yielded a significant correlation between niche overlap and genetic distance. CONCLUSIONS: Our genetic data suggest that three species of Milicia could be recognized. It is surprising that the occurrence of two species in Central Africa was not reported for this well-known timber tree. Globally, our work highlights the importance of collecting samples in a systematic way and the need for combining different nuclear markers when dealing with species complexes. Recognizing cryptic species is particularly crucial for economically exploited species because some hidden taxa might actually be endangered as they are merged with more abundant species.


Assuntos
DNA de Plantas , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Rosales/genética , Árvores/genética , África Central , África Oriental , África Ocidental , Estruturas Genéticas , Genótipo , Família Multigênica , Filogenia , Rosales/classificação , Análise de Sequência de DNA , Especificidade da Espécie , Simpatria , Árvores/classificação
15.
J Microbiol Methods ; 224: 107000, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029594

RESUMO

Understanding the role of root microbiota is crucial in sustainable forest management but remains challenging, especially for tropical trees. We developed an efficient and low-toxicity method to extract and amplify the fungal DNA associated with Aucoumea klaineana Pierre fine roots. To improve DNA quality, we optimized a commercial extraction kit by incorporating activated charcoal and modifying incubation periods. This enhanced protocol, combined with bovine serum albumin during PCR, effectively mitigated inhibitors present in A. klaineana tree root samples. This approach opens new perspectives for studying the microbiota of tropical trees.

16.
BMC Evol Biol ; 13: 195, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24028582

RESUMO

BACKGROUND: The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. RESULTS: Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. CONCLUSIONS: Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes.


Assuntos
Fabaceae/classificação , Fabaceae/genética , África Central , África Ocidental , Teorema de Bayes , Biodiversidade , Evolução Biológica , Clima , DNA de Plantas/genética , Ecossistema , Fabaceae/fisiologia , Pool Gênico , Deriva Genética , Árvores/classificação , Árvores/genética , Árvores/fisiologia
17.
Am J Bot ; 99(9): 1453-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22912370

RESUMO

PREMISE OF THE STUDY: Population genetic structuring over limited timescales is commonly viewed as a consequence of spatial constraints. Indirect approaches have recently revealed reproductive isolation resulting from flowering time (so-called isolation by time, IBT). Since phenological processes can be subject to selection, the persistence of flowering asynchrony may be due to opposing selective pressures during mating, dispersal, and regeneration phases. Our study aimed to investigate phenology, fruit handling by animals, and their interaction in a timber tree species, Milicia excelsa. METHODS: We analyzed phenological data collected over 6 years on 69 genotyped trees in a Cameroonian natural rainforest complemented by data from germination trials and field observations of dispersers. KEY RESULTS: Initiation of flowering was correlated with variation in temperature and relative humidity, but was also affected by genetic factors: pairwise differences in flowering time between nearby individuals correlated with kinship coefficient, and earliness of flowering remained stable over time. A decrease in mean seed production per fruit with increasing flowering time suggests selection against late bloomers. However, germination rate was not affected by seed collection date, and the main seed disperser, the bat Eidolon helvum, seemed to increase in abundance at the end of the reproductive season and preferred trees in open habitats where early and late bloomers are expected. CONCLUSIONS: The pairwise approach performs well in detecting IBT. The persistence of different mating pools in such a case may result from a trade off between selective forces during the mating and seed dispersal processes.


Assuntos
Moraceae/fisiologia , Isolamento Reprodutivo , Dispersão de Sementes/fisiologia , Árvores/fisiologia , Clima Tropical , Animais , Camarões , Quirópteros/fisiologia , Ecossistema , Flores/fisiologia , Frutas/fisiologia , Loci Gênicos/genética , Genética Populacional , Geografia , Germinação/fisiologia , Repetições de Microssatélites/genética , Moraceae/genética , Folhas de Planta/fisiologia , Chuva , Estações do Ano , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Árvores/genética
18.
Am J Bot ; 98(10): e268-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21926310

RESUMO

PREMISE OF THE STUDY: Microsatellite loci were developed in the endangered Pericopsis elata using a combination of low-cost procedures. METHODS AND RESULTS: Microsatellite isolation was performed simultaneously on three distinct species through a newly available procedure that associates multiplex microsatellite enrichment and next-generation sequencing, allowing the rapid and low-cost development of microsatellite-enriched libraries through the use of a 1/32nd GS-FLX plate. Genotyping using M13-like labeling in multiplexed reactions allowed additional cost savings. From 72 primers selected for initial screening, 21 positively amplified P. elata, and 11 showed polymorphism with two to 11 alleles per locus and a mean value of 5.4 alleles per locus. CONCLUSIONS: These microsatellite loci will be useful to further investigate the level of genetic variation within and between natural populations of P. elata in Africa.


Assuntos
Fabaceae/genética , Loci Gênicos/genética , Técnicas Genéticas/economia , Repetições de Microssatélites/genética , Alelos , Análise Custo-Benefício , Genética Populacional , Heterozigoto , Dados de Sequência Molecular
19.
Mol Ecol ; 19(20): 4462-77, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20854478

RESUMO

The impact of the Pleistocene climate oscillations on the structure of biodiversity in tropical regions remains poorly understood. In this study, the forest refuge theory is examined at the molecular level in Milicia excelsa, a dioecious tree with a continuous range throughout tropical Africa. Eight nuclear microsatellites (nSSRs) and two sequences and one microsatellite from chloroplast DNA (cpDNA) showed a deep divide between samples from Benin and those from Lower Guinea. This suggests that these populations were isolated in separate geographical regions, probably for several glacial cycles of the Pleistocene, and that the nuclear gene pools were not homogenized despite M. excelsa's wind-pollination syndrome. The divide could also be related to seed dispersal patterns, which should be largely determined by the migration behaviour of M. excelsa's main seed disperser, the frugivorous bat Eidolon helvum. Within Lower Guinea, a north-south divide, observed with both marker types despite weak genetic structure (nSSRs: F(ST) = 0.035, cpDNA: G(ST) = 0.506), suggested the existence of separate Pleistocene refugia in Cameroon and the Gabon/Congo region. We inferred a pollen-to-seed dispersal distance ratio of c.1.8, consistent with wide-ranging gene dispersal by both wind and bats. Simulations in an Approximate Bayesian Computation framework suggested low nSSR and cpDNA mutation rates, but imprecise estimates of other demographic parameters, probably due to a substantial gene flow between the Lower Guinean gene pools. The decline of genetic diversity detected in some Gabonese populations could be a consequence of the relatively recent establishment of a closed canopy forest, which could negatively affect M. excelsa's reproductive system.


Assuntos
DNA de Cloroplastos/genética , Fluxo Gênico , Genética Populacional , Repetições de Microssatélites , Moraceae/genética , África , Teorema de Bayes , Análise por Conglomerados , DNA de Plantas/genética , Evolução Molecular , Pool Gênico , Modelos Genéticos , Pólen/genética , Sementes/genética , Análise de Sequência de DNA , Árvores/genética
20.
Front Plant Sci ; 11: 798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625223

RESUMO

The dating of diversification events, including transitions between biomes, is key to elucidate the processes that underlie the assembly and evolution of tropical biodiversity. Afzelia is a widespread genus of tropical trees, threatened by exploitation for its valuable timber, that presents an interesting system to investigate diversification events in Africa. Africa hosts diploid Afzelia species in the savannahs north and south of the Guineo-Congolian rainforest and autotetraploid species confined to the rainforest. Species delimitation and phylogenetic relationships among the diploid and tetraploid species remained unresolved in previous studies using small amounts of DNA sequence data. We used genotyping-by-sequencing in the five widespread Afzelia species in Africa, the savannah species A. africana and A. quanzensis and the rainforest species A. bipindensis, A. pachyloba, and A. bella. Maximum likelihood and coalescent approaches resolved all species as monophyletic and placed the savannah and rainforest taxa into two separate clades corresponding to contrasted ploidy levels. Our data are thus compatible with a single biome shift in Afzelia in Africa, although we were unable to conclude on its direction. SNAPP calibrated species trees show that the savannah diploids started to diversify early, at 12 (9.09-14.89) Ma, which contrasts with a recent and rapid diversification of the rainforest tetraploid clade, starting at 4.22 (3.12 - 5.36) Ma. This finding of older diversification in a tropical savannah clade vs. its sister rainforest clade is exceptional; it stands in opposition to the predominant observation of young ages for savannahs lineages in tropical regions during the relatively recent expansion of the savannah biome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA