Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833870

RESUMO

Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.


Assuntos
Glaucoma de Ângulo Aberto , Doenças Neurodegenerativas , Animais , Humanos , Adulto Jovem , Amiloide/metabolismo , Olho/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Antígeno gp100 de Melanoma/genética , Melanossomas/genética , Melanossomas/metabolismo , Doenças Neurodegenerativas/metabolismo , Peixe-Zebra
2.
Hum Genet ; 141(3-4): 431-444, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278131

RESUMO

Sequencing exomes/genomes have been successful for identifying recessive genes; however, discovery of dominant genes including deafness genes (DFNA) remains challenging. We report a new DFNA gene, ATP11A, in a Newfoundland family with a variable form of bilateral sensorineural hearing loss (SNHL). Genome-wide SNP genotyping linked SNHL to DFNA33 (LOD = 4.77), a locus on 13q34 previously mapped in a German family with variable SNHL. Whole-genome sequencing identified 51 unremarkable positional variants on 13q34. Continuous clinical ascertainment identified several key recombination events and reduced the disease interval to 769 kb, excluding all but one variant. ATP11A (NC_000013.11: chr13:113534963G>A) is a novel variant predicted to be a cryptic donor splice site. RNA studies verified in silico predictions, revealing the retention of 153 bp of intron in the 3' UTR of several ATP11A isoforms. Two unresolved families from Israel were subsequently identified with a similar, variable form of SNHL and a novel duplication (NM_032189.3:c.3322_3327+2dupGTCCAGGT) in exon 28 of ATP11A extended exon 28 by 8 bp, leading to a frameshift and premature stop codon (p.Asn1110Valfs43Ter). ATP11A is a type of P4-ATPase that transports (flip) phospholipids from the outer to inner leaflet of cell membranes to maintain asymmetry. Haploinsufficiency of ATP11A, the phospholipid flippase that specially transports phosphatidylserine (PS) and phosphatidylethanolamine (PE), could leave cells with PS/PE at the extracellular side vulnerable to phagocytic degradation. Given that surface PS can be pharmaceutically targeted, hearing loss due to ATP11A could potentially be treated. It is also likely that ATP11A is the gene underlying DFNA33.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Regiões 3' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/genética , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Fosfolipídeos/metabolismo , Sítios de Splice de RNA
3.
Hum Genet ; 141(3-4): 965-979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34633540

RESUMO

Otosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified. Herein, we map a new OTSC locus to a 9.96 Mb region within the FOX gene cluster on 16q24.1 and identify a 15 bp coding deletion in Forkhead Box L1 co-segregating with otosclerosis in a Caucasian family. Pre-operative phenotype ranges from moderate to severe hearing loss to profound sensorineural loss requiring a cochlear implant. Mutant FOXL1 is both transcribed and translated and correctly locates to the cell nucleus. However, the deletion of 5 residues in the C-terminus of mutant FOXL1 causes a complete loss of transcriptional activity due to loss of secondary (alpha helix) structure. FOXL1 (rs764026385) was identified in a second unrelated case on a shared background. We conclude that FOXL1 (rs764026385) is pathogenic and causes autosomal dominant otosclerosis and propose a key inhibitory role for wildtype Foxl1 in bone remodelling in the otic capsule. New insights into the molecular pathology of otosclerosis from this study provide molecular targets for non-invasive therapeutic interventions.


Assuntos
Otosclerose , Fatores de Transcrição Forkhead/genética , Humanos , Otosclerose/genética
4.
Hum Mutat ; 34(1): 66-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22911656

RESUMO

X-linked hearing loss is the rarest form of genetic hearing loss contributing to <1% of cases. We identified a multiplex family from Newfoundland (Family 2024) segregating X-linked hearing loss. Haplotyping of the X chromosome and sequencing of positional candidate genes revealed a novel point deletion (c.99delC) in SMPX which encodes a small muscle protein responsible for reducing mechanical stress during muscle contraction. This novel deletion causes a frameshift and a premature stop codon (p.Arg34GlufsX47). We successfully sequenced both SMPX wild-type and mutant alleles from cDNA of a lymphoblastoid cell line, suggesting that the mutant allele may not be degraded via nonsense-mediated mRNA decay. To investigate the role of SMPX in other subpopulations, we fully sequenced SMPX in 229 Canadian probands with hearing loss and identified a second Newfoundland Family (2196) with the same mutation, and a shared haplotype on the X chromosome, suggesting a common ancestor.


Assuntos
Efeito Fundador , Doenças Genéticas Ligadas ao Cromossomo X/genética , Perda Auditiva/genética , Proteínas Musculares/genética , Deleção de Sequência , Sequência de Bases , Análise Mutacional de DNA , Éxons/genética , Saúde da Família , Feminino , Humanos , Masculino , Linhagem
5.
Nat Commun ; 13(1): 6595, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329026

RESUMO

Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.


Assuntos
Ciliopatias , Distrofias Retinianas , Masculino , Animais , Humanos , Cílios/metabolismo , Peixe-Zebra/genética , Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas/metabolismo
6.
Ophthalmol Sci ; 1(2): 100028, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36249295

RESUMO

Purpose: Peroxisomal biogenesis disorders (PBDs) represent a spectrum of conditions that result in vision loss, sensorineural hearing loss, neurologic dysfunction, and other abnormalities resulting from aberrant peroxisomal function caused by mutations in PEX genes. With no treatments currently available, we sought to investigate the disease mechanism in a patient with a PBD caused by defects in PEX6 and to probe whether overexpression of PEX6 could restore peroxisome function and potentially offer therapeutic benefit. Design: Laboratory-based study. Participants: A 12-year-old boy sought treatment with hearing loss and retinopathy. After negative results in an Usher syndrome panel, targeted genetic testing revealed compound heterozygous mutations in PEX6. These included a 14-nucleotide deletion (c.802_815del: p.(Asp268Cysfs∗8)) and a milder missense variant (c.35T→C:(p.Phe12Ser)). Methods: Patient-derived skin fibroblasts were cultured, and a PEX6 knockout cell line was developed using clustered regularly interspaced short palindromic repeats and Cas9 technology in HEK293T cells to emulate a more severe disease phenotype. Immunoblot analysis of whole cell lysates was performed to assess peroxisome number. Immunofluorescence studies used antibodies against components of the peroxisomal protein import pathway to interrogate the effects of mutations in PEX6 on protein trafficking. Main Outcome Measures: Primary outcome measures were peroxisome abundance and matrix protein import. Results: Peroxisome number was not significantly different between control fibroblasts and patient fibroblasts; however, fewer peroxisomes were observed in PEX6 knockout cells compared with wild-type cells (P = 0.04). Analysis by immunofluorescent microscopy showed significantly impaired peroxisomal targeting signal 1- and peroxisomal targeting signal 2-mediated matrix protein import in both patient fibroblasts and PEX6 knockout cells. Overexpressing PEX6 resulted in improved matrix protein import in PEX6 knockout cells. Conclusions: Mutations in PEX6 were responsible for combined hearing loss and retinopathy in our patient. The primary peroxisomal defect in our patient's skin fibroblasts was impaired peroxisomal protein import as opposed to reduction in the number of peroxisomes. Genetic strategies that introduce wild-type PEX6 into cells deficient in PEX6 protein show promise in restoring peroxisome function. Future studies of patient-specific induced pluripotent stem cell-derived retinal pigment epithelium cells may clarify the role of PEX6 in the retina and the potential for gene therapy in these patients.

7.
Eur J Hum Genet ; 29(8): 1171-1185, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33776059

RESUMO

Inherited retinal dystrophies (IRDs) affect 1 in 3000 individuals worldwide and are genetically heterogeneous, with over 270 identified genes and loci; however, there are still many identified disorders with no current genetic etiology. Whole exome sequencing (WES) provides a hypothesis-free first examination of IRD patients in either a clinical or research setting to identify the genetic cause of disease. We present a study of IRD in ten families from Alberta, Canada, through the lens of novel gene discovery. We identify the genetic etiology of IRDs in three of the families to be variants in known disease-associated genes, previously missed by clinical investigations. In addition, we identify two potentially novel associations: LRP1 in early-onset drusen formation and UBE2U in a multi-system condition presenting with retinoschisis, cataracts, learning disabilities, and developmental delay. We also describe interesting results in our unsolved cases to provide further information to other investigators of these blinding conditions.


Assuntos
Deficiências do Desenvolvimento/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Drusas Retinianas/genética , Retinosquise/genética , Adolescente , Adulto , Idoso , Criança , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Drusas Retinianas/patologia , Retinosquise/patologia , Síndrome , Sequenciamento do Exoma
8.
Invest Ophthalmol Vis Sci ; 59(6): 2548-2554, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847662

RESUMO

Purpose: This study examines the effect of FOXC1 on the prostaglandin pathway in order to explore FOXC1's role in the prostaglandin-resistant glaucoma phenotype commonly seen in Axenfeld-Rieger syndrome. Methods: Binding and transcriptional activity of FOXC1 to the gene coding for the EP3 prostaglandin receptor (PTGER3) were evaluated through ChIP-qPCR and luciferase-based assays. Immortalized trabecular meshwork cells (TM1) and HeLa cells had FOXC1 mRNA reduced via siRNA interference. qPCR and Western blot experiments were conducted to examine the changes in prostaglandin receptor expression brought about by lowered FOXC1. TM1 cells were then treated with 10 µM latanoprost acid and/or an siRNA for FOXC1. The expression of fibronectin and matrix metalloproteinase 9 were evaluated via qPCR in each treatment condition. Results: ChIP-qPCR and luciferase experiments confirmed that FOXC1 binds to and activates transcription of the EP3 gene prostaglandin receptor. qPCR and Western experiments in HeLa and TM1 cells showed that FOXC1 siRNA knockdown results in significantly lowered EP3 levels (protein and RNA). In addition, RNA levels of the other prostaglandin receptor genes EP1 (PTGER1), EP2 (PTGER2), EP4 (PTGER4), and FP (PTGFR) were altered when FOXC1 was knocked down in TM1 and HeLa cells. Analysis of fibronectin expression in TM1 cells after treatment with 10 µM latanoprost acid showed a statistically significant increase in expression; this increase was abrogated by cotreatment with a siRNA for FOXC1. Conclusions: We show the abrogation of latanoprost signalling when FOXC1 is knocked down via siRNA in a trabecular meshwork cell line. We propose that the lower levels of active FOXC1 in Axenfeld-Rieger syndrome patients with glaucoma account for the lack of response to prostaglandin-based medications.


Assuntos
Anti-Hipertensivos/farmacologia , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica/fisiologia , Latanoprosta/farmacologia , Receptores de Prostaglandina E Subtipo EP3/genética , Malha Trabecular/efeitos dos fármacos , Segmento Anterior do Olho/anormalidades , Western Blotting , Anormalidades do Olho/tratamento farmacológico , Oftalmopatias Hereditárias/tratamento farmacológico , Inativação Gênica/fisiologia , Glaucoma/tratamento farmacológico , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Humanos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Malha Trabecular/metabolismo
9.
Ophthalmic Genet ; 38(2): 108-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27070211

RESUMO

Prostaglandins are small pro-inflammatory molecules derived from arachidonic acid that play roles in a multitude of biological processes including, but not limited to, inflammation, pain modulation, allergies, and bone formation. Prostaglandin analogues are the front-line medications for the treatment of glaucoma, a condition resulting in blindness due to the death of retinal ganglion cells. These drugs act by lowering intraocular pressure (IOP), a major risk factor for glaucoma. The currently used prostaglandin analogues (latanoprost, bimatoprost, tafluprost, and travoprost) mimic PGF2 and target one of the prostaglandin receptors (FP), though research into harnessing the other receptors using compounds like Sulprostone (EP3 receptor), or Iloprost (IP receptor) are currently ongoing. In this review, we summarize the research into each of the prostaglandin molecules (PGD2, PGE2, PGF2, PGI2, TXA2) and their respective receptors (DP, EP1, 2, 3, 4, FP, IP). We examine the modes of action of each of these receptors, their expression, their role in aqueous humour production and outflow within the eye, as well as their roles as medications for the treatment of glaucoma.


Assuntos
Olho/metabolismo , Glaucoma/metabolismo , Prostaglandinas Sintéticas/uso terapêutico , Prostaglandinas/fisiologia , Glaucoma/tratamento farmacológico , Humanos , Pressão Intraocular/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo
10.
PLoS One ; 12(6): e0178518, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575017

RESUMO

The neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC) death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage. Furthermore, many patients do not respond well to treatments. It is therefore important to better understand the mechanisms involved in glaucoma pathogenesis. Patients with Axenfeld-Rieger syndrome (ARS) offer important insight into glaucoma progression. ARS patients are at 50% risk of developing early onset glaucoma and respond poorly to treatments, even when surgical treatments are combined with medications. Mutations in the transcription factor FOXC1 cause ARS. Alterations in FOXC1 levels cause ocular malformations and disrupt stress response in ocular tissues, thereby contributing to glaucoma progression. In this study, using biochemical and molecular techniques, we show that FOXC1 regulates the expression of RAB3GAP1, RAB3GAP2 and SNAP25, three genes with central roles in both exocytosis and endocytosis, responsible for extracellular trafficking. FOXC1 positively regulates RAB3GAP1 and RAB3GAP2, while either increase or decrease in FOXC1 levels beyond its normal range results in decreased SNAP25. In addition, we found that FOXC1 regulation of RAB3GAP1, RAB3GAP2 and SNAP25 affects secretion of Myocilin (MYOC), a protein associated with juvenile onset glaucoma and steroid-induced glaucoma. The present work reveals that FOXC1 is an important regulator of exocytosis and establishes a new link between FOXC1 and MYOC-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Exocitose , Proteínas do Olho/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Glicoproteínas/metabolismo , Proteína 25 Associada a Sinaptossoma/fisiologia , Proteínas rab3 de Ligação ao GTP/fisiologia , Fatores de Transcrição Forkhead/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Luciferases/genética , RNA Mensageiro/genética , Proteína 25 Associada a Sinaptossoma/genética , Ativação Transcricional , Proteínas rab3 de Ligação ao GTP/genética
11.
Surv Ophthalmol ; 60(4): 310-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25907525

RESUMO

Glaucoma, a progressive degenerative condition that results in the death of retinal ganglion cells, is one of the leading causes of blindness, affecting millions worldwide. The mechanisms underlying glaucoma are not well understood, although years of studies have shown that the largest risk factors are elevated intraocular pressure, age, and genetics. Eleven genes and multiple loci have been identified as contributing factors. These genes act by a number of mechanisms, including mechanical stress, ischemic/oxidative stress, and neurodegeneration. We summarize the recent advances in the understanding of glaucoma and propose a unified hypothesis for glaucoma pathogenesis. Glaucoma does not result from a single pathological mechanism, but rather a combination of pathways that are influenced by genes, age, and environment. In particular, we hypothesize that, in the presence of genetic risk factors, exposure to environment stresses results in an earlier age of onset for glaucoma. This hypothesis is based upon the overlap of the molecular pathways in which glaucoma genes are involved. Because of the interactions between these processes, it is likely that there are common therapies that may be effective for different subtypes of glaucoma.


Assuntos
Idade de Início , Interação Gene-Ambiente , Predisposição Genética para Doença/etiologia , Glaucoma/etiologia , Células Ganglionares da Retina/patologia , Humanos , Estresse Oxidativo , Fatores de Risco
12.
Ophthalmic Genet ; 34(3): 119-29, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23362848

RESUMO

Achromatopsia (ACHM) is a severe retinal disorder characterized by an inability to distinguish colors, impaired visual acuity, photophobia and nystagmus. This rare autosomal recessive disorder of the cone photoreceptors is best known for its increased frequency due to founder effect in the Pingelapese population of the Pacific islands. Sixteen patients from Newfoundland, Canada were sequenced for mutations in the four known achromatopsia genes CNGA3, CNGB3, GNAT2, and PDE6C. The majority (n = 12) of patients were either homozygotes or compound heterozygotes for known achromatopsia alleles, two in CNGB3 (p.T383fsX and p.T296YfsX9) and three in CNGA3 (p.R283Q, p.R427C and p.L527R). Haplotype reconstruction showed that recurrent mutations p.T383fsX and p.L527R were due to a founder effect. Aggregate data from exome sequencing, segregation analysis and archived medical records support a rediagnosis of Jalili syndrome in affected siblings (n = 4) from Family 0094, which to our knowledge is the first family identified with Jalili Syndrome in North America.


Assuntos
Defeitos da Visão Cromática/genética , Efeito Fundador , Heterogeneidade Genética , Hipertricose/genética , Amaurose Congênita de Leber/genética , Retinose Pigmentar/genética , Testes de Percepção de Cores , Defeitos da Visão Cromática/etnologia , Consanguinidade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Eletrorretinografia , Proteínas do Olho/genética , Feminino , Haplótipos , Humanos , Masculino , Biologia Molecular , Mutação , Terra Nova e Labrador/epidemiologia , Linhagem , Transducina/genética , Acuidade Visual , Testes de Campo Visual , População Branca/etnologia
13.
Eur J Hum Genet ; 21(10): 1112-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23443030

RESUMO

Autosomal dominant sensorineural hearing loss (ADSNHL) is extremely genetically heterogeneous, making it difficult to molecularly diagnose. We identified a multiplex (n=28 affected) family from the genetic isolate of Newfoundland, Canada with variable SNHL and used a targeted sequencing approach based on population-specific alleles in WFS1, TMPRSS3 and PCDH15; recurrent mutations in GJB2 and GJB6; and frequently mutated exons of KCNQ4, COCH and TECTA. We identified a novel, in-frame deletion (c.806_808delCCT: p.S269del) in the voltage-gated potassium channel KCNQ4 (DFNA2), which in silico modeling predicts to disrupt multimerization of KCNQ4 subunits. Surprisingly, 10/23 deaf relatives are non-carriers of p.S269del. Further molecular characterization of the DFNA2 locus in deletion carriers ruled out the possibility of a pathogenic mutation other than p.S269del at the DFNA2A/B locus and linkage analysis showed significant linkage to DFNA2 (maximum LOD=3.3). Further support of genetic heterogeneity in family 2071 was revealed by comparisons of audio profiles between p.S269del carriers and non-carriers suggesting additional and as yet unknown etiologies. We discuss the serious implications that genetic heterogeneity, in this case observed within a single family, has on molecular diagnostics and genetic counseling.


Assuntos
Deleção de Genes , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Sequência de Aminoácidos , Conexina 26 , Conexinas , Feminino , Heterogeneidade Genética , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Canais de Potássio KCNQ/química , Escore Lod , Masculino , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
Eur J Hum Genet ; 19(3): 293-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21150893

RESUMO

Anterior segment dysgenesis (ASD) is a spectrum of disorders that affect the anterior ocular chamber. Clinical studies on a Newfoundland family over the past 30 years show that 11 relatives have a variable ocular phenotype ranging from microcornea to Peters anomaly, segregating as an autosomal dominant trait. To determine the molecular etiology of the variable ASD in this family, we sequenced nine functional candidate genes and identified 44 variants. A point mutation in FOXE3, which codes for a transcription factor involved in the formation of the lens and surrounding structures, co-segregated with the variable ocular phenotype. This novel mutation (c.959G>T) substitutes the stop codon for a leucine residue, predicting the addition of 72 amino acids to the C-terminus of FOXE3. Two recent reports have also identified non-stop mutations in FOXE3 in patients with variable ocular phenotypes and predict an extended protein. Although FOXE3 is a lens-specific gene, we successfully isolated complementary DNA from lymphoblasts of an affected family member, and our sequencing results show that the c.959T allele is absent, suggesting that it may be degraded at the RNA level. Though preliminary, our results challenge the notion that an extended FOXE3 protein causes ASD, and instead suggests a mechanism of haploinsufficiency in the case of non-stop mutations. This study adds to several reports that suggest that autosomal-dominant mutations within FOXE3 cause ASD and has important clinical utility, especially for the diagnosis of mildly affected patients.


Assuntos
Fatores de Transcrição Forkhead/genética , Mutação Puntual , Adulto , Idoso , Alelos , Segmento Anterior do Olho/anormalidades , Catarata/genética , Criança , Opacidade da Córnea/genética , Anormalidades do Olho/genética , Feminino , Seguimentos , Haploinsuficiência , Humanos , Cristalino/patologia , Masculino , Pessoa de Meia-Idade , Terra Nova e Labrador , Fenótipo , Análise de Sequência de DNA , Adulto Jovem
15.
Eur J Hum Genet ; 17(5): 554-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19107147

RESUMO

We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.


Assuntos
Caderinas/genética , Cromossomos Humanos Par 10/genética , Surdez/genética , Mutação de Sentido Incorreto , Audiometria de Tons Puros , Sequência de Bases , Proteínas Relacionadas a Caderinas , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Surdez/patologia , Surdez/fisiopatologia , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Geografia , Humanos , Masculino , Terra Nova e Labrador , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA