Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961779

RESUMO

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Rim Fundido/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/etiologia , Criança , Pré-Escolar , Epilepsia/complicações , Evolução Molecular , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Fenótipo , Estabilidade Proteica , Síndrome , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Adulto Jovem , Peixe-Zebra/genética
2.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197073

RESUMO

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Assuntos
Mutação da Fase de Leitura/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/fisiologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Animais , Orientação de Axônios/genética , Sequência de Bases/genética , Células Cultivadas , Pré-Escolar , Regulação para Baixo/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Hipotonia Muscular/genética , Antígeno Neuro-Oncológico Ventral , Peixe-Zebra/genética
3.
Hum Mol Genet ; 29(13): 2218-2239, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32504085

RESUMO

The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.


Assuntos
Antígenos de Neoplasias/genética , Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Nanismo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Malformações do Sistema Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Nanismo/patologia , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
Am J Hum Genet ; 102(1): 44-57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276004

RESUMO

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epilepsia/genética , Proteínas de Ligação ao GTP/genética , Mutação de Sentido Incorreto/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Sequência de Aminoácidos , Animais , Comportamento Animal , Criança , Pré-Escolar , Dendritos/metabolismo , Feminino , Proteínas de Ligação ao GTP/química , Dosagem de Genes , Células HEK293 , Humanos , Masculino , Fenótipo , Sinapses/patologia , Proteínas Supressoras de Tumor/química
5.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
6.
Genet Med ; 23(6): 1101-1107, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495530

RESUMO

PURPOSE: Data on the clinical prevalence and spectrum of uniparental disomy (UPD) remain limited. Trio exome sequencing (ES) presents a comprehensive method for detection of UPD alongside sequence and copy-number variant analysis. METHODS: We analyzed 32,067 ES trios referred for diagnostic testing to create a profile of UPD events and their disease associations. ES single-nucleotide polymorphism (SNP) and copy-number data were used to identify both whole-chromosome and segmental UPD and to categorize whole-chromosome results as isodisomy, heterodisomy, or mixed. RESULTS: Ninety-nine whole-chromosome and 13 segmental UPD events were identified. Of these, 29 were associated with an imprinting disorder, and 16 were associated with a positive test result through homozygous sequence variants. Isodisomy was more commonly observed in large chromosomes along with a higher rate of homozygous pathogenic variants, while heterodisomy was more frequent in chromosomes associated with imprinting or trisomy mosaicism (14, 15, 16, 20, 22). CONCLUSION: Whole-chromosome UPD was observed in 0.31% of cases, resulting in a diagnostic finding in 0.14%. Only three UPD-positive cases had a diagnostic finding unrelated to the UPD. Thirteen UPD events were identified in cases with prior normal SNP chromosomal microarray results, demonstrating the additional diagnostic value of UPD detection by trio ES.


Assuntos
Exoma , Dissomia Uniparental , Variações do Número de Cópias de DNA/genética , Exoma/genética , Homozigoto , Humanos , Dissomia Uniparental/genética , Sequenciamento do Exoma
7.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28686853

RESUMO

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Assuntos
Fácies , Marcha/genética , Haploinsuficiência/genética , Deficiência Intelectual/genética , Proteínas/genética , Convulsões/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , Deleção Cromossômica , Feminino , Crescimento e Desenvolvimento/genética , Humanos , Deficiência Intelectual/complicações , Masculino , Mutação/genética , Proteínas/química , Estabilidade de RNA/genética , Convulsões/complicações , Síndrome
8.
Hum Mutat ; 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646703

RESUMO

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

9.
Kidney Int ; 95(6): 1494-1504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005274

RESUMO

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON. Here, we show that many of these patients, including two previously unreported, exhibit a wide array of kidney abnormalities. Detailed phenotyping of 14 patients with SON haploinsufficiency identified kidney anomalies in 8 patients, including horseshoe kidney, unilateral renal hypoplasia, and renal cysts. Recurrent urinary tract infections, electrolyte disturbances, and hypertension were also observed in some patients. SON knockdown in kidney cell lines leads to abnormal pre-mRNA splicing, resulting in decreased expression of several established CAKUT genes. Furthermore, these molecular events were observed in patient-derived cells with SON haploinsufficiency. Taken together, our data suggest that the wide spectrum of phenotypes in patients with a pathogenic SON mutation is a consequence of impaired pre-mRNA splicing of several CAKUT genes. We propose that genetic testing panels designed to diagnose children with a kidney phenotype should include the SON gene.


Assuntos
Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Haploinsuficiência , Antígenos de Histocompatibilidade Menor/genética , Splicing de RNA/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Canais de Cátion TRPP/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico
10.
Am J Hum Genet ; 98(4): 782-8, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040691

RESUMO

Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition.


Assuntos
Deficiência Intelectual/genética , Hipotonia Muscular/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Alelos , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Hipotonia Muscular/diagnóstico , Grupos Raciais/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Am J Hum Genet ; 99(4): 962-973, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666370

RESUMO

Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αß-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective ß-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/ß-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.


Assuntos
Alelos , Encefalopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Dobramento de Proteína , Tubulina (Proteína)/metabolismo , Adolescente , Idade de Início , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Proliferação de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/química
12.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545680

RESUMO

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Genes Essenciais/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação/genética , Splicing de RNA/genética , Animais , Encéfalo/anormalidades , Encéfalo/patologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Anormalidades do Olho/genética , Feminino , Haploinsuficiência/genética , Cabeça/anormalidades , Heterozigoto , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Antígenos de Histocompatibilidade Menor/análise , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem , RNA Mensageiro/análise , Coluna Vertebral/anormalidades , Síndrome , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologia , Peixe-Zebra/genética
14.
Genet Med ; 21(3): 601-607, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30245509

RESUMO

PURPOSE: TANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants. METHODS: We present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2. RESULTS: The initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder. CONCLUSION: TANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Adolescente , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Encefalopatias/genética , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Exoma , Família , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Fenótipo , Convulsões/genética , Sequenciamento do Exoma/métodos
15.
Genet Med ; 21(9): 2036-2042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30739909

RESUMO

PURPOSE: To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients. METHODS: Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information. RESULTS: The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports. CONCLUSION: We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma , Adulto Jovem
16.
Clin Genet ; 96(4): 354-358, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290144

RESUMO

TTI2 (MIM 614126) has been described as responsible for autosomal recessive intellectual disability (ID; MRT39, MIM:615541) in only two inbred families. Here, we give an account of two individuals from two unrelated outbred families harbouring compound heterozygous TTI2 pathogenic variants. Together with severe ID, progressive microcephaly, scoliosis and sleeping disorder are the most striking features in the two individuals concerned. TTI2, together with TTI1 and TELO2, encode proteins that constitute the triple T heterotrimeric complex. This TTT complex interacts with the HSP90 and R2TP to form a super-complex that has a chaperone function stabilising and maturing a number of kinases, such as ataxia-telangiectasia mutated and mechanistic target of rapamycin, which are key regulators of cell proliferation and genome maintenance. Pathogenic variants in TTI2 logically result in a phenotype close to that caused by TELO2 variants.


Assuntos
Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Criança , Fácies , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Fenótipo , Radiografia
17.
Hum Mutat ; 39(12): 1875-1884, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157302

RESUMO

SMAD2 is a downstream effector in the TGF-ß signaling pathway, which is important for pattern formation and tissue differentiation. Pathogenic variants in SMAD2 have been reported in association with arterial aneurysms and dissections and in large cohorts of subjects with complex congenital heart disease (CHD). We used whole exome sequencing (WES) to investigate the molecular cause of CHD and other congenital anomalies in three probands and of an arterial aneurysm in an additional patient. Patients 1 and 2 presented with complex CHD, developmental delay, seizures, dysmorphic features, short stature, and poor weight gain. Patient 3 was a fetus with complex CHD and heterotaxy. The fourth patient is an adult female with aortic root aneurysm and physical features suggestive of a connective tissue disorder. WES identified pathogenic truncating variants, a splice variant, and a predicted deleterious missense variant in SMAD2. We compare the phenotypes and genotypes in our patients with previously reported cases. Our data suggest two distinct phenotypes associated with pathogenic variants in SMAD2: complex CHD with or without laterality defects and other congenital anomalies, and a late-onset vascular phenotype characterized by arterial aneurysms with connective tissue abnormalities.


Assuntos
Aneurisma Aórtico/genética , Cardiopatias Congênitas/genética , Mutação , Proteína Smad2/genética , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Pessoa de Meia-Idade , Fenótipo , Gravidez , Sequenciamento do Exoma/métodos
18.
Am J Med Genet A ; 176(9): 1845-1851, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055086

RESUMO

Gross deletions involving the MEIS2 gene have been described in a small number of patients with overlapping phenotypes of atrial or ventricular septal defects, cleft palate, and variable developmental delays and intellectual disability. Non-specific dysmorphic features were noted in some patients, including broad forehead with high anterior hairline, arched eyebrows, thin or tented upper lip, and short philtrum. Recently, a patient with a de novo single amino acid deletion, c.998_1000delGAA (p.Arg333del), and a patient with a de novo nonsense variant, (c.611C>G, p.Ser204*), were reported with a similar, but apparently more severe phenotypes. Clinical whole exome sequencing (WES) performed at our clinical molecular diagnostic laboratory identified four additional patients with predicted damaging de novo MEIS2 missense variants. Our patients' features closely resembled those previously reported in patients with gross deletions, but also included some less commonly reported features, such as autism spectrum disorder, hearing loss, and short stature, as well as features that may be unique to nucleotide-level variants, such as hypotonia, failure to thrive, gastrointestinal, skeletal, limb, and skin abnormalities. All of the observed missense variants, Pro302Leu, Gln322Leu, Arg331Lys, and Val335Ala, are located in the functionally important MEIS2 homeodomain. Pro302Leu is found in the region between helix 1 and helix 2, while the other three are located in the DNA-binding helix 3. To our knowledge, these are the first described de novo missense variants in MEIS2, expanding the known mutation spectrum of the newly recognized human disorder caused by aberrations in this gene.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deleção Cromossômica , Proteínas de Homeodomínio/genética , Mutação de Sentido Incorreto , Fenótipo , Fatores de Transcrição/genética , Alelos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Fácies , Feminino , Frequência do Gene , Estudos de Associação Genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Palato/anormalidades , Síndrome , Sequenciamento do Exoma
20.
Am J Med Genet A ; 173(1): 213-216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865048

RESUMO

Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc.


Assuntos
Ansiedade/genética , Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Códon sem Sentido , Hiperfagia/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Adolescente , Alelos , Ansiedade/diagnóstico , Transtorno Autístico/diagnóstico , Biomarcadores , Exoma , Proteína do X Frágil da Deficiência Intelectual/genética , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperfagia/diagnóstico , Hibridização in Situ Fluorescente , Deficiência Intelectual/diagnóstico , Masculino , Testes Neuropsicológicos , Obesidade/diagnóstico , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA