Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7972): 154-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495689

RESUMO

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Assuntos
Jejum , Sistema Hipotálamo-Hipofisário , Neurônios , Sistema Hipófise-Suprarrenal , Proteína Relacionada com Agouti/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/inervação , Sistema Hipófise-Suprarrenal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(27): 13670-13679, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213533

RESUMO

Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.


Assuntos
Fome/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Leptina/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Hormônio Adrenocorticotrópico/sangue , Animais , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Insulina/farmacologia , Leptina/sangue , Masculino , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Receptores de Glucocorticoides/antagonistas & inibidores
3.
Cereb Cortex ; 24(5): 1138-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23302812

RESUMO

The left and right sides of the nervous system communicate via commissural axons that cross the midline during development using evolutionarily conserved molecules. These guidance cues have been particularly well studied in the mammalian spinal cord, but it remains unclear whether these guidance mechanisms for commissural axons are similar in the developing forebrain, in particular for the corpus callosum, the largest and most important commissure for cortical function. Here, we show that Netrin1 initially attracts callosal pioneering axons derived from the cingulate cortex, but surprisingly is not attractive for the neocortical callosal axons that make up the bulk of the projection. Instead, we show that Netrin-deleted in colorectal cancer signaling acts in a fundamentally different manner, to prevent the Slit2-mediated repulsion of precrossing axons thereby allowing them to approach and cross the midline. These results provide the first evidence for how callosal axons integrate multiple guidance cues to navigate the midline.


Assuntos
Axônios/fisiologia , Corpo Caloso/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Receptor DCC , Embrião de Mamíferos , Feminino , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Humanos , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Netrina-1 , Gravidez , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Roundabout
4.
Elife ; 102021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871356

RESUMO

The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.


Assuntos
Astrócitos/metabolismo , Corpo Caloso/metabolismo , Receptor DCC/metabolismo , Telencéfalo/metabolismo , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/patologia , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Chlorocebus aethiops , Corpo Caloso/embriologia , Receptor DCC/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Mutação , Netrina-1/genética , Netrina-1/metabolismo , Fenótipo , Transdução de Sinais , Telencéfalo/embriologia
5.
Nat Neurosci ; 20(10): 1384-1394, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825719

RESUMO

The complex behaviors underlying reward seeking and consumption are integral to organism survival. The hypothalamus and mesolimbic dopamine system are key mediators of these behaviors, yet regulation of appetitive and consummatory behaviors outside of these regions is poorly understood. The central nucleus of the amygdala (CeA) has been implicated in feeding and reward, but the neurons and circuit mechanisms that positively regulate these behaviors remain unclear. Here, we defined the neuronal mechanisms by which CeA neurons promote food consumption. Using in vivo activity manipulations and Ca2+ imaging in mice, we found that GABAergic serotonin receptor 2a (Htr2a)-expressing CeA neurons modulate food consumption, promote positive reinforcement and are active in vivo during eating. We demonstrated electrophysiologically, anatomically and behaviorally that intra-CeA and long-range circuit mechanisms underlie these behaviors. Finally, we showed that CeAHtr2a neurons receive inputs from feeding-relevant brain regions. Our results illustrate how defined CeA neural circuits positively regulate food consumption.


Assuntos
Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/fisiologia , Reforço Psicológico , Animais , Condicionamento Operante/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Receptor 5-HT2C de Serotonina/metabolismo , Esquema de Reforço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA