Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 172(3): 1653-1661, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583025

RESUMO

Cryptochromes are blue light-absorbing photoreceptors found in plants and animals with many important signalling functions. These include control of plant growth, development, and the entrainment of the circadian clock. Plant cryptochromes have recently been implicated in adaptations to temperature variation, including temperature compensation of the circadian clock. However, the effect of temperature directly on the photochemical properties of the cryptochrome photoreceptor remains unknown. Here we show that the response to light of purified Arabidopsis Cry1 and Cry2 proteins was significantly altered by temperature. Spectral analysis at 15°C showed a pronounced decrease in flavin reoxidation rates from the biologically active, light-induced (FADH°) signalling state of cryptochrome to the inactive (FADox) resting redox state as compared to ambient (25°C) temperature. This result indicates that at low temperatures, the concentration of the biologically active FADH° redox form of Cry is increased, leading to the counterintuitive prediction that there should be an increased biological activity of Cry at lower temperatures. This was confirmed using Cry1 cryptochrome C-terminal phosphorylation as a direct biological assay for Cry activation in vivo. We conclude that enhanced cryptochrome function in vivo at low temperature is consistent with modulation by temperature of the cryptochrome photocycle.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos , Flavinas , Luz , Temperatura
2.
Commun Integr Biol ; 14(1): 66-77, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33995820

RESUMO

COVID-19 - related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called 'cytokine storms' are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by ROS (Reactive Oxygen Species). Both light (Photobiomodulation) and magnetic fields (e.g., Pulsed Electro Magnetic Field) stimulation are noninvasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either Pulsed Electromagnetic Fields (PEMF), or to Low-Level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects, and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID-19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID-19 patients both in the home and in the hospital.

3.
Biochim Biophys Acta ; 1789(3): 167-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118656

RESUMO

Long synthetic mRNAs were used to study the positioning of the E site codon, the 2nd and 3rd nucleotides of the A site bound codon and a nucleotide 3' of this codon with respect to the 18S rRNA in the human 80S ribosome. The mRNAs contained a GAC triplet coding for Asp and a single 4-thiouridine residue (s(4)U) upstream or downstream of the GAC codon. In the presence of tRNA(Asp), the GAC codon of the mRNAs was targeted to the ribosomal P site thus placing s(4)U in one of the following positions -3, -2, -1, +5, +6 or +7 with respect to the first nucleotide of the P site bound codon. It was found that mRNAs that bore s(4)U in positions +5 to +7 cross-linked to the 18S rRNA nucleotides C1696, C1698 and 1820-1825, the distribution of cross-links among these targets depending on the position of s(4)U. Cross-links of mRNAs containing s(4)U in positions -3 to -1 were found in the region 1699-1704 of the 18S rRNA. In the absence of tRNA, all mRNAs cross-linked only to C1696 and C1698. Absence of the cross-linked nucleotides C1696 and C1698 in the case of mRNAs containing s(4)U in positions -3 to -1 confirmed that tRNA(Asp) actually phased the mRNA on the ribosome.


Assuntos
Códon/genética , RNA Mensageiro/química , RNA Ribossômico 18S/química , Ribossomos/química , Tiouridina/química , Sequência de Bases , Sítios de Ligação/genética , Códon/química , Reagentes de Ligações Cruzadas/química , Humanos , RNA Ribossômico 18S/genética , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Aspártico/genética , Ribossomos/genética
4.
Biochimie ; 90(11-12): 1624-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18585432

RESUMO

This study is directed towards an important problem concerning the organization of the peptidyl transferase center (PTC) on the mammalian ribosome that cannot be studied by X-ray analysis since crystals of 80S ribosomes are still unavailable. Here, we investigated the arrangement of the 3'-end of tRNA in the 80S ribosomal A and P sites using a tRNA(Asp) analogue that bears a 4-thiouridine (s(4)U) attached to the 3'-terminal adenosine. It was shown that an additional nucleotide s(4)U77 on the 3'-end does not impede codon-dependent binding of the tRNA to the A and P sites of 80S ribosome. Mild UV-irradiation of the ribosomal complexes containing a short appropriately designed mRNA and the tRNA analogue resulted in cross-linking of the analogue exclusively to 28S rRNA. The cross-linking site was detected in the 4302-4540 fragment of the 28S rRNA which belongs to the highly conserved domain V that in prokaryotic ribosomes is involved in the formation of the PTC. Nucleotides cross-linked to the tRNA analogue were determined by means of reverse transcription. A comparison of the results obtained with a dynamic model of mutual arrangement of s(4)U77 of the A site tRNA and nucleotides of 23S rRNA built on the basis of an atomic model for the prokaryotic PTC led to the conclusion that environments of the tRNA 3'-terminus in prokaryotic and eukaryotic ribosomes share a significant extent of similarity, although pronounced differences are also detectable.


Assuntos
Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Fenilalanina/química , Ribossomos/metabolismo , Sequência de Bases , Humanos , Dados de Sequência Molecular , RNA Mensageiro/química , RNA Ribossômico 23S/química , RNA Ribossômico 28S/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA