RESUMO
Saffron spice owes its commercial appreciation to its specific apocarotenoids: crocins, picrocrocin, and safranal. In Crocus sativus, these compounds are biosynthesized from zeaxanthin through oxidative cleavage by the carotenoid cleavage dioxygenase 2 (CCD2). Transgenic tomato plants expressing CsCCD2 in the fruit, named Tomaffron, accumulate high levels of saffron apocarotenoids despite the low substrate availability for CsCCD2. In the present study, CsCCD2 has been introduced into Xantomato; this tomato variety accumulates high levels of zeaxanthin and ß-carotene in ripe fruit due to a combination of four mutant alleles. Xantomato and Tomaffron genotypes have been combined to optimize apocarotenoid production. The best transgenic lines accumulated 15 and 14 times more crocins and picrocrocin than Tomaffron, alongside a fourfold increase in ß-carotene compared to Xantomato, albeit at a cost in fruit yield. Segregation of the four mutations has been carried out to find the best combination for obtaining high levels of saffron apocarotenoids without adverse effects on fruit yield. Plants harboring the high-pigmented 3 (hp3) and BETA (BSh) mutations accumulated 6 and 15 times more crocins and picrocrocin than Tomaffron, without observable pleiotropic effects. Additionally, those high levels of saffron apocarotenoids were obtained in fruit accumulating high levels of both lycopene and ß-carotene independently or in combination, suggesting a regulatory role for the apocarotenoids produced and indicating that it is possible to increase the levels of both types of healthy promoting molecules simultaneously.
Assuntos
Carotenoides , Crocus , Frutas , Plantas Geneticamente Modificadas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Carotenoides/metabolismo , Crocus/genética , Crocus/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , beta Caroteno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zeaxantinas/metabolismo , Terpenos/metabolismo , Cicloexenos/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Genótipo , GlucosídeosRESUMO
Cassava (Manihot esculenta Crantz) is an important staple crop for food security in Africa and South America. The present study describes an integrated genomic and metabolomic approach to the characterization of Latin American cassava germplasm. Classification based on genotyping correlated with the leaf metabolome and indicated a key finding of adaption to specific eco-geographical environments. In contrast, the root metabolome did not relate to genotypic clustering, suggesting the different spatial regulation of this tissue's metabolome. The data were used to generate pan-metabolomes for specific tissues, and the inclusion of phenotypic data enabled the identification of metabolic sectors underlying traits of interest. For example, tolerance to whiteflies (Aleurotrachelus socialis) was not linked directly to cyanide content but to cell wall-related phenylpropanoid or apocarotenoid content. Collectively, these data advance the community resources and provide valuable insight into new candidate parental breeding materials with traits of interest directly related to combating food security.
Assuntos
Manihot , Manihot/genética , Manihot/metabolismo , América Latina , Melhoramento Vegetal , Fenótipo , GenótipoRESUMO
Sustainable production of chemicals and improving these biosources by engineering metabolic pathways to create efficient plant-based biofactories relies on the knowledge of available chemical/biosynthetic diversity present in the plant. Nicotiana species are well known for their amenability towards transformation and other new plant breeding techniques. The genus Nicotiana is primarily known through Nicotiana tabacum L., the source of tobacco leaves and all respective tobacco products. Due to the prevalence of the latter, N. tabacum and related Nicotiana species are one of the most extensively studied plants. The majority of studies focused solely on N. tabacum or other individual species for chemotyping. The present study analysed a diversity panel including 17 Nicotiana species and six accessions of Nicotiana benthamiana and created a data set that effectively represents the chemotype core collection of the genus Nicotiana. The utilisation of several analytical platforms and previously published libraries/databases enabled the identification and measurement of over 360 metabolites of a wide range of chemical classes as well as thousands of unknowns with dedicated spectral and chromatographic properties.
Assuntos
Nicotiana , Melhoramento Vegetal , Redes e Vias Metabólicas , Nicotiana/genética , Nicotiana/metabolismoRESUMO
Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.
Assuntos
Potexvirus , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Expressão Gênica , Potexvirus/genética , Potexvirus/metabolismo , RNA Guia de Cinetoplastídeos/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.
Assuntos
Aminoácidos de Cadeia Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismoRESUMO
Exhaustive analysis of genetically modified crops over multiple decades has increased societal confidence in the technology. New Plant Breeding Techniques are now emerging with improved precision and the ability to generate products containing no foreign DNA and mimic/replicate conventionally bred varieties. In the present study, metabolomic analysis was used to compare (i) tobacco genotypes with and without the CRISPR associated protein 9 (Cas9), (ii) tobacco lines with the edited and non-edited DE-ETIOLATED-1 gene without phenotype and (iii) leaf and fruit tissue from stable non-edited tomato progeny with and without the Cas9. In all cases, multivariate analysis based on the difference test using LC-HRMS/MS and GC-MS data indicated no significant difference in their metabolomes. The variations in metabolome composition that were evident could be associated with the processes of tissue culture regeneration and/or transformation (e.g. interaction with Agrobacterium). Metabolites responsible for the variance included quantitative changes of abundant, well characterised metabolites such as phenolics (e.g. chlorogenic acid) and several common sugars such as fructose. This study provides fundamental data on the characterisation of gene edited crops, that are important for the evaluation of the technology and its assessment. The approach also suggests that metabolomics could contribute to routine product-based analysis of crops/foods generated from New Plant Breeding approaches.
Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal , MetabolômicaRESUMO
Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.
Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Oryza/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amilopectina/biossíntese , Amilopectina/química , Amilose/biossíntese , Amilose/química , Metabolismo dos Carboidratos , Grão Comestível/genética , Endosperma/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Sementes/metabolismo , Amido/biossíntese , Sintase do Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismoRESUMO
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.
Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados como Assunto , Metaboloma , Musa/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Tubérculos/metabolismo , Metabolômica/métodos , Melhoramento Vegetal/métodosRESUMO
Over the recent years, Nicotiana benthamiana has gained great importance as a chassis for the production of high value, low volume pharmaceuticals and/or active pharmaceutical ingredients (APIs). The process involving infiltration of the N. benthamiana leaves with Agrobacterium spp, harbouring vectors with the gene of interest, facilitates transient expression. To date, little information is available on the effect of the agro-infiltration process on the metabolome of N. benthamiana, which is necessary to improve the process for large-scale, renewable manufacturing of high value compounds and medical products. Hence, the objective of the present study was to assess metabolic adaptation of N. benthamiana as a response to the presence of Agrobacterium. The present study elucidated changes of the steady-state metabolism in the agroinfiltrated leaf area, the area around the infection and the rest of the plant. Furthermore, the study discusses the phenotypic advantages of the N. benthamiana lab strain, optimised for agro-infiltration, compared to three other wild accessions. Results showed that the lab strain has a different metabolic composition and showed less alterations of the phenylpropanoid pathway and cell wall remodelling in the agroinfiltrated leaf areas, for example chlorogenic acid, cadaverine and C18:0-2-glycerol ester. In conclusion, both of these alterations present potential candidates to improve the phenotype of the N. benthamiana lab strain for a more efficient transient expression process.
Assuntos
Agrobacterium/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Agrobacterium/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologiaRESUMO
KEY MESSAGE: Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor's isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles. Rice (Oryza sativa) has two IPPI isoforms (OsIPPI1 and OsIPPI2). We, therefore, carried out a comprehensive comparison of IPPI gene expression, protein localization, and isoprenoid biosynthesis in this species. We found that OsIPPI1 mRNA was more abundant than OsIPPI2 mRNA in all tissues, and its expression in de-etiolated leaves mirrored the accumulation of phytosterols, suggesting a key role in the synthesis of MVA pathway isoprenoids. We investigated the subcellular localization of both isoforms by constitutively expressing them as fusions with synthetic green fluorescent protein. Both proteins localized to the endoplasmic reticulum (ER) as well as peroxisomes and mitochondria, whereas only OsIPPI2 was detected in plastids, due to an N-terminal transit peptide which is not present in OsIPPI1. Despite the plastidial location of OsIPPI2, the expression of OsIPPI2 mRNA did not mirror the accumulation of chlorophylls or carotenoids, indicating that OsIPPI2 may be a redundant component of the MEP pathway. The detection of both OsIPPI isoforms in the ER indicates that DMAPP can be synthesized de novo in this compartment. Our work shows that the ER plays an as yet unknown role in the synthesis of MVA-derived isoprenoids, with important implications for the metabolic engineering of isoprenoid biosynthesis in higher plants.
Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Retículo Endoplasmático/enzimologia , Hemiterpenos/metabolismo , Oryza/enzimologia , Terpenos/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Hemiterpenos/genética , Ácido Mevalônico/metabolismo , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Oryza/genética , Oryza/metabolismo , Peroxissomos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismoRESUMO
A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture conditions in five Mycobacterium species (two fast- and three slow-growing) with the potential to act as model organisms for Mycobacterium tuberculosis (Mtb). Analysis has been performed over designated growth phases and under representative environments (nutrient and oxygen depletion) experienced by Mtb during infection. The procedure was useful in determining a range of metabolites (60-120 compounds) covering nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and isoprenoids. Among these classes of compounds, key biomarker metabolites, which can act as indicators of pathway/process activity, were identified. In numerous cases, common metabolite traits were observed for all five species across the experimental conditions (e.g. uracil indicating DNA repair). Amino acid content, especially glutamic acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied (e.g. nitrogen assimilation). The greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed a strong correlation between changes in transcription and metabolite content. Collectively, these data validate the changes in the transcription at the metabolite level, suggesting transcription exists as one of the predominant modes of cellular regulation in Mycobacterium. Sectors with restricted correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the laboratory conditions used and data derived from in vivo conditions, indicate that the approach applied is a valuable addition to our understanding of cell regulation in these Mycobacterium species.
Assuntos
Anaerobiose/fisiologia , Metabolismo Energético/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Oxigênio/metabolismo , Ácidos/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/genética , Metabolismo dos Lipídeos/fisiologia , Mycobacterium/genética , Nucleotídeos/metabolismo , Transcrição Gênica/genéticaRESUMO
Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (ß-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that â¼20 µg ß-carotene/g DW can reduced the PPD response of the cassava roots to a score of â¼1. Correlation analysis showed a significant correlation of ß-carotene content at harvest to PPD response (R2 -0.55). However, the decrease of ß-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from ß-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to ß-carotene or PPD. Observed data indicated an increase (â¼2-fold) of alkanes in varieties with ß-carotene >10 µg/g DW and a decrease (â¼60%) in varieties with less ß-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher ß-carotene content. In combination with correlation values to PPD (R2 â¼0.3; P-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.
Assuntos
Manihot , Raízes de Plantas , Manihot/genética , Manihot/fisiologia , Manihot/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , beta Caroteno/metabolismo , beta Caroteno/análiseRESUMO
Vitamin A deficiency (VAD) in Low and Medium Income countries remains a major health concern. Ipomoea batatas, orange sweet potato (OSP), is one of the biofortification solutions being implemented by the World Health Organisation (WHO) to combat VAD. However, high provitamin A (ß-carotene) content has been associated with a reduction in dry matter, reducing calorific value and having adverse effects on consumer traits. Both starch and carotenoid formation are located in amyloplasts and could potentially compete for the same precursors. Hence, five different sweet potato storage root phenotypes were characterized through spatial metabolomics and proteomics at the sub-plastidal level. The metabolite data suggested an indirect correlation of starch and carotenoids through the TCA cycle and pentose phosphate pathway. Furthermore, a change in lipid composition was observed to accommodate the storage of carotenoids in the hydrophilic environment of the amyloplast. The data suggests an alteration of cellular ultra-structures and perturbation of metabolism in high ß-carotene producing sweet potato roots. This corroborates with previous gene expression analysis through biochemical analysis of sweet potato root tissue.
Assuntos
Ipomoea batatas , Carbono/metabolismo , Carotenoides/metabolismo , Ipomoea batatas/química , Lipídeos , Fenótipo , Raízes de Plantas/química , Plastídeos/metabolismo , Provitaminas/análise , Amido/metabolismo , beta Caroteno/análise , beta Caroteno/metabolismoRESUMO
Carotenoid biosynthesis and sequestration in higher plants occurs in the plastid organelle. Among diverse germplasm collections displaying natural variation for carotenoids and outputs from metabolic engineering experiments it has become clear that plastid type and numbers can have important implications on the quantitative composition of carotenoids accumulating. Therefore, it is important to characterize these organelles to fully evaluate the potential of the germplasm to enhance carotenoids and create nutrient dense fruits and vegetables. In this article the procedures used to isolate sub-plastidial structures from carotenoid-rich Solanaceae fruits (tomato and Capsicum) are described.
Assuntos
Frutas , Solanum lycopersicum , Carotenoides/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Plastídeos/metabolismoRESUMO
Carotenoid biosynthesis has now been subjected to metabolic engineering for over two decades. The outputs clearly show that carotenoid formation is an integral component of metabolism. Perturbations can affect intermediary metabolism and other isoprenoids. The advances in omic technologies have enabled the quantitative assessment of changes in the transcriptome, proteome and metabolome in response to altered carotenoid biosynthesis. In the present article, the approaches and procedures relating to the capture of the metabolome in response to modulation of the carotenoid biosynthetic pathway are described. These data will contribute to the fundamental understanding of metabolic biology, underpinning future rationale design of New Plant Breeding Techniques (NPBTs) and associated regulatory affairs.
Assuntos
Regulação da Expressão Gênica de Plantas , Engenharia Metabólica , Carotenoides/metabolismo , Engenharia Metabólica/métodos , Metaboloma , Metabolômica/métodosRESUMO
Biochemical characterisation of germplasm collections and crop wild relatives (CWRs) facilitates the assessment of biological potential and the selection of breeding lines for crop improvement. Data from the biochemical characterisation of staple root, tuber and banana (RTB) crops, i.e. banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yam (Dioscorea spp.), using a metabolomics approach is presented. The data support the previously published research article "Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops" (Price et al., 2020) [1]. Diversity panels for each crop, which included a variety of species, accessions, landraces and CWRs, were characterised. The biochemical profile for potato was based on five elite lines under abiotic stress. Metabolites were extracted from the tissue of foliage and storage organs (tuber, root and banana pulp) via solvent partition. Extracts were analysed via a combination of liquid chromatography - mass spectrometry (LC-MS), gas chromatography (GC)-MS, high pressure liquid chromatography with photodiode array detector (HPLC-PDA) and ultra performance liquid chromatography (UPLC)-PDA. Metabolites were identified by mass spectral matching to in-house libraries comprised from authentic standards and comparison to databases or previously published literature.
RESUMO
Dwindling fossil fuel reserves and poor environmental credentials of chemical synthesis means, new renewable sources for the production and manufacture of valuable chemicals and pharmaceuticals are required. Presently, tobacco is an underutilised non-food crop with the potential to act as a biofactory. In this study, metabolite profiling across vegetative development has been carried out to provide a quantitative baseline of metabolites, their formation and interaction. Two tobacco platforms have been used, Nicotiana benthamiana and Nicotiana tabacum. Our data generated has provided the quantitative and qualitative baseline levels for exploitable pathways and metabolites, across two complementary Nicotiana species. N. benthamiana is the chassis of choice for transient expression. The metabolite data obtained for N. benthamiana highlighted that before flower emergence, the increased central carbon metabolism and high amino acid levels are available for the biosynthesis of endogenous or heterologous metabolites. In the future, engineering pathways or biocatalysts into N. benthamiana could add value to the process presently used to produce low volume, high cost pharmaceuticals. Similar outputs were obtained for N. tabacum, which has the advantage of providing a large biomass and hence, high product yield. These data provide an insight into the metabolite pools available in tobacco for future exploitation by emerging New Plant Breeding Techniques.
Assuntos
Nicotiana/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Metabolismo Secundário/genética , Biocombustíveis , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Geneticamente ModificadasRESUMO
Over the previous decades, biotechnological innovations have led to improved agricultural productivity, more nutritious foods and lower chemical usage. Both in western societies and Low Medium Income Countries (LMICs). However, the projected increases in the global population, means the production of nutritious food stuffs must increase dramatically. Building on existing genetic modification technologies a series of New Plant Breeding Technologies (NPBT) has recently emerged. These approaches include, Agro-infiltration, grafting, cis and intragenesis and gene editing technologies. How these new techniques should be regulated has fostered considerable debate. Concerns have also been raised, to ensure over-regulation does not arise, creating administrative and economic burden. In this article the existing landscape of genetically modified crops is reviewed and the potential of several New Plant Breeding Techniques (NPBT) described. Metabolomics is an omic technology that has developed in a concurrent manner with biotechnological advances in plant breeding. There is potentially further opportunities to advance our metabolomic technologies to characterise the outputs of New Plant Breeding Technologies, in a manner that is beneficial both from an academic, biosafety and industrial perspective.
Assuntos
Produtos Agrícolas/genética , Metabolômica/métodos , Melhoramento Vegetal/legislação & jurisprudência , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Biotecnologia/métodosRESUMO
Light is an essential regulator of many developmental processes in higher plants. We investigated the effect of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1/2 genes (OsHDR1/2) and isopentenyl diphosphate isomerase 1/2 genes (OsIPPI1/2) on the biosynthesis of chlorophylls, carotenoids, and phytosterols in 14-day-old etiolated rice (Oyza sativa L.) leaves during de-etiolation. However, little is known about the effect of isoprenoid biosynthesis genes on the corresponding metabolites during the de-etiolation of etiolated rice leaves. The results showed that the levels of α-tocopherol were significantly increased in de-etiolated rice leaves. Similar to 1-deoxy-D-xylulose-5-phosphate synthase 3 gene (OsDXS3), both OsDXS1 and OsDXS2 genes encode functional 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activities. Their expression patterns and the synthesis of chlorophyll, carotenoid, and tocopherol metabolites suggested that OsDXS1 is responsible for the biosynthesis of plastidial isoprenoids in de-etiolated rice leaves. The expression analysis of isoprenoid biosynthesis genes revealed that the coordinated expression of the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway, chlorophyll, carotenoid, and tocopherol pathway genes mirrored the changes in the levels of the corresponding metabolites during de-etiolation. The underpinning mechanistic basis of coordinated light-upregulated gene expression was elucidated during the de-etiolation process, specifically the role of light-responsive cis-regulatory motifs in the promoter region of these genes. In silico promoter analysis showed that the light-responsive cis-regulatory elements presented in all the promoter regions of each light-upregulated gene, providing an important link between observed phenotype during de-etiolation and the molecular machinery controlling expression of these genes.
RESUMO
Strawberries (Fragaria × ananassa Duch.) are one of the most economically important fruit crops worldwide, several commercially viable cultivars are cultivated in the northern region of Thailand. The morphological characters at the young vegetative seedling stage can be very similar, which has hindered breeding efforts. The present study assesses the ability of random amplification of polymorphic DNA (RAPD) markers and metabolomics techniques to distinguish six strawberry cultivars. Both techniques showed congruent results for the leaf tissue and classified the cultivars into three major clusters. For the most different cultivars, Akihime and Praratchatan No.80, fruits were analysed at eight fruit ripening stages. The data highlighted a broad biological variation at the early ripening stages and less biological variation at the mature stages. Key metabolic differences included the polyphenol profile in Praratchatan No.80 and fatty acid synthesis/oxidation in Akihime. In summary, the RAPD and metabolite data can be used to distinguish strawberry cultivars and elucidate the metabolite composition of each phenotype. This approach to the characterisation of genotypes will benefit future breeding programmes.