Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 140(11): 1291-1304, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763665

RESUMO

Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Animais , Calreticulina/genética , Calreticulina/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glucose , Glicosilação , Humanos , Janus Quinase 2/genética , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/metabolismo
2.
Anal Chem ; 95(27): 10289-10297, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37293957

RESUMO

N-linked glycosylation plays an important role in both the innate and adaptive immune response through the modulation of cell surface receptors as well as general cell-to-cell interactions. The study of immune cell N-glycosylation is gaining interest but is hindered by the complexity of cell-type-specific N-glycan analysis. Analytical techniques such as chromatography, LC-MS/MS, and the use of lectins are all currently used to analyze cellular glycosylation. Issues with these analytical techniques include poor throughput, which is often limited to a single sample at a time, lack of structural information, the need for a large amount of starting materials, and the requirement for cell purification, thereby reducing their feasibility for N-glycan study. Here, we report the development of a rapid antibody array-based approach for the capture of specific nonadherent immune cells coupled with MALDI-IMS to analyze cellular N-glycosylation. This workflow is adaptable to multiple N-glycan imaging approaches such as the removal or stabilization and derivatization of terminal sialic acid residues providing unique avenues of analysis that have otherwise not been explored in immune cell populations. The reproducibility, sensitivity, and versatility of this assay provide an invaluable tool for researchers and clinical applications, significantly expanding the field of glycoimmunology.


Assuntos
Anticorpos , Espectrometria de Massas em Tandem , Glicosilação , Cromatografia Líquida , Reprodutibilidade dos Testes , Anticorpos/metabolismo , Polissacarídeos/química
3.
J Biol Chem ; 287(10): 7615-25, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22235130

RESUMO

It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.


Assuntos
Apolipoproteína A-II/química , Apolipoproteína A-I/química , Lipoproteínas HDL/química , Lipoproteínas/química , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Medição da Troca de Deutério , Humanos , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Estrutura Secundária de Proteína
4.
Mol Ther Nucleic Acids ; 32: 1010-1025, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346975

RESUMO

Post-translational glycosylation of the HIV-1 envelope protein involving precursor glycan trimming by mannosyl oligosaccharide glucosidase (MOGS) is critically important for morphogenesis of virions and viral entry. Strategic editing of the MOGS gene in T lymphocytes and myeloid origin cells harboring latent proviral DNA results in the production of non-infectious particles upon treatment of cells with latency reversal agents. Controlled activation of CRISPR-MOGS by rebound HIV-1 mitigates production of infectious particles that exhibit poor ability of the virus to penetrate uninfected cells. Moreover, exclusive activation of CRISPR in cells infected with HIV-1 alleviates concern for broad off-target impact of MOGS gene ablation in uninfected cells. Combination CRISPR treatment of peripheral blood lymphocytes prepared from blood of people with HIV-1 (PWH) tailored for editing the MOGS gene (CRISPR-MOGS) and proviral HIV-1 DNA (CRISPR-HIV) revealed a cooperative impact of CRISPR treatment in inhibiting the production of infectious HIV-1 particles. Our design for genetic inactivation of MOGS by CRISPR exhibits no detectable off-target effects on host cells or any deleterious impact on cell survival and proliferation. Our findings offer the development of a new combined gene editing-based cure strategy for the diminution of HIV-1 spread after cessation of antiretroviral therapy (ART) and its elimination.

5.
J Lipid Res ; 53(8): 1708-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636422

RESUMO

Recombinant expression systems have become powerful tools for understanding the structure and function of proteins, including the apolipoproteins that comprise human HDL. However, human apolipoprotein (apo)A-II has proven difficult to produce by recombinant techniques, likely contributing to our lack of knowledge about its structure, specific biological function, and role in cardiovascular disease. Here we present a novel Escherichia coli-based recombinant expression system that produces highly pure mature human apoA-II at substantial yields. A Mxe GyrA intein containing a chitin binding domain was fused at the C terminus of apoA-II. A 6× histidine-tag was also added at the fusion protein's C terminus. After rapid purification on a chitin column, intein auto-cleavage was induced under reducing conditions, releasing a peptide with only one extra N-terminal Met compared with the sequence of human mature apoA-II. A pass through a nickel chelating column removed any histidine-tagged residual fusion protein, leaving highly pure apoA-II. A variety of electrophoretic, mass spectrometric, and spectrophotometric analyses demonstrated that the recombinant form is comparable in structure to human plasma apoA-II. Similarly, recombinant apoA-II is comparable to the plasma form in its ability to bind and reorganize lipid and promote cholesterol efflux from macrophages via the ATP binding cassette transporter A1. This system is ideal for producing large quantities of recombinant wild-type or mutant apoA-II for structural or functional studies.


Assuntos
Apolipoproteína A-II/genética , Apolipoproteína A-II/isolamento & purificação , Escherichia coli/metabolismo , Engenharia Genética/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequência de Aminoácidos , Apolipoproteína A-II/química , Apolipoproteína A-II/metabolismo , Dicroísmo Circular , Técnicas de Cultura , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
6.
J Clin Invest ; 111(3): 389-97, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12569165

RESUMO

Protease inhibitors decrease the viral load in HIV patients, however the patients develop hypertriglyceridemia, hypercholesterolemia, and atherosclerosis. It has been assumed that protease inhibitor-dependent increases in atherosclerosis are secondary to the dyslipidemia. Incubation of THP-1 cells or human PBMCs with protease inhibitors caused upregulation of CD36 and the accumulation of cholesteryl esters. The use of CD36-blocking antibodies, a CD36 morpholino, and monocytes isolated from CD36 null mice demonstrated that protease inhibitor-induced increases in cholesteryl esters were dependent on CD36 upregulation. These data led to the hypothesis that protease inhibitors induce foam cell formation and consequently atherosclerosis by upregulating CD36 and cholesteryl ester accumulation independent of dyslipidemia. Studies with LDL receptor null mice demonstrated that low doses of protease inhibitors induce an increase in the level of CD36 and cholesteryl ester in peritoneal macrophages and the development of atherosclerosis without altering plasma lipids. Furthermore, the lack of CD36 protected the animals from protease inhibitor-induced atherosclerosis. Finally, ritonavir increased PPAR-gamma and CD36 mRNA levels in a PKC- and PPAR-gamma-dependent manner. We conclude that protease inhibitors contribute to the formation of atherosclerosis by promoting the upregulation of CD36 and the subsequent accumulation of sterol in macrophages.


Assuntos
Arteriosclerose/induzido quimicamente , Antígenos CD36/biossíntese , Ésteres do Colesterol/metabolismo , Inibidores da Protease de HIV/farmacologia , Macrófagos/metabolismo , Animais , Antígenos CD36/metabolismo , Hiperlipidemias/tratamento farmacológico , Imunoglobulina M/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Regulação para Cima
7.
J Clin Invest ; 111(10): 1579-87, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12750408

RESUMO

Cardiovascular diseases remain the leading cause of death in the United States. Two factors associated with a decreased risk of developing cardiovascular disease are elevated HDL levels and sex - specifically, a decreased risk is found in premenopausal women. HDL and estrogen stimulate eNOS and the production of nitric oxide, which has numerous protective effects in the vascular system including vasodilation, antiadhesion, and anti-inflammatory effects. We tested the hypothesis that HDL binds to its receptor, scavenger receptor class B type I (SR-BI), and delivers estrogen to eNOS, thereby stimulating the enzyme. HDL isolated from women stimulated eNOS, whereas HDL isolated from men had minimal activity. Studies with ovariectomized and ovariectomized/estrogen replacement mouse models demonstrated that HDL-associated estradiol stimulation of eNOS is SR-BI dependent. Furthermore, female HDL, but not male HDL, promoted the relaxation of muscle strips isolated from C57BL/6 mice but not SR-BI null mice. Finally, HDL isolated from premenopausal women or postmenopausal women receiving estradiol replacement therapy stimulated eNOS, whereas HDL isolated from postmenopausal women did not stimulate eNOS. We conclude that HDL-associated estrodial is capable of the stimulating eNOS. These studies establish a new paradigm for examining the cardiovascular effects of HDL and estrogen.


Assuntos
Antígenos CD36/metabolismo , Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Lipoproteínas HDL/farmacologia , Proteínas de Membrana , Óxido Nítrico Sintase/metabolismo , Receptores Imunológicos , Receptores de Lipoproteínas , Animais , Antígenos CD36/genética , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Estradiol/metabolismo , Feminino , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Terapia de Reposição Hormonal , Humanos , Técnicas In Vitro , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Ovariectomia , Receptores Depuradores , Receptores Depuradores Classe B , Fatores Sexuais , Vasodilatação/efeitos dos fármacos
8.
J Biol Chem ; 280(19): 19087-96, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15749707

RESUMO

Scavenger receptor class B, type I (SR-BI)/ApoE double null mice develop severe atherosclerosis within 4 weeks, whereas ApoE null mice take several months to develop the disease, indicating that SR-BI plays a pivotal role in atherosclerosis. Importantly, SR-BI/ApoE double null mice have lower plasma cholesterol levels than ApoE null mice, suggesting involvement of a non-lipids mechanism. In the present study, we revealed a novel ligand-independent apoptotic pathway induced by SR-BI, and regulated by endothelial nitric-oxide synthase (eNOS) and high density lipoprotein (HDL). SR-BI significantly induces apoptosis in three independent cell systems. In contrast to known ligand-dependent apoptotic pathways, SR-BI-induced apoptosis is ligand-independent. We further showed that SR-BI-induced apoptosis is suppressed by eNOS and HDL. By using a single site mutation, we demonstrated that SR-BI induces apoptosis through a highly conserved CXXS redox motif. We finally demonstrated that SR-BI-induced apoptosis is via the caspase-8 pathway. We hypothesize that in healthy cells, the SR-BI apoptotic pathway is turned off by eNOS and HDL which prevents inappropriate apoptotic damage to the vascular wall. When HDL levels are low, oxidative stress causes the relocation of eNOS away from caveolae, which turns on SR-BI-induced apoptosis and rapidly clears damaged cells to prevent further inflammatory damage to neighboring cells. The current studies offer a new paradigm in which to study the non-cholesterol effects of SR-BI, HDL, and eNOS on the development of atherosclerosis and potentially other cardiovascular diseases.


Assuntos
Lipoproteínas HDL/metabolismo , Óxido Nítrico Sintase/metabolismo , Receptores Imunológicos/fisiologia , Motivos de Aminoácidos , Animais , Apolipoproteínas E/metabolismo , Apoptose , Arteriosclerose/metabolismo , Sítios de Ligação , Antígenos CD36 , Células CHO , Cricetinae , DNA Complementar/metabolismo , Ativação Enzimática , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Inflamação , Ligantes , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Contraste de Fase , Modelos Biológicos , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Oxirredução , Estresse Oxidativo , Receptores Imunológicos/genética , Receptores Depuradores , Receptores Depuradores Classe B , Fatores de Tempo
9.
J Biol Chem ; 277(26): 23525-33, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-11976335

RESUMO

Numerous studies have implicated either the presence or absence of CD36 in the development of hypertension. In addition, hypercholesterolemia is associated with the loss of nitric oxide-induced vasodilation and the subsequent increase in blood pressure. In the current study, we tested the hypothesis that diet-induced hypercholesterolemia promotes the disruption of agonist-stimulated nitric oxide generation and vasodilation in a CD36-dependent manner. To test this, C57BL/6, apoE null, CD36 null, and apoE/CD36 null mice were maintained on chow or high fat diets. In contrast to apoE null mice fed a chow diet, apoE null mice fed a high fat diet did not respond to acetylcholine with a decrease in blood pressure. Caveolae isolated from in vivo vessels did not contain endothelial nitric-oxide synthase and were depleted of cholesterol. Age-matched apoE/CD36 null mice fed a chow or high fat diet responded to acetylcholine with a decrease in blood pressure. The mechanism underlying the vascular dysfunction was reversible because vessels isolated from apoE null high fat-fed mice regained responsiveness to acetylcholine when incubated with plasma obtained from chow-fed mice. Further analysis demonstrated that the plasma low density lipoprotein fraction was responsible for depleting caveolae of cholesterol, removing endothelial nitric-oxide synthase from caveolae, and preventing nitric oxide production. In addition, the pharmacological removal of caveola cholesterol with cyclodextrin mimicked the effects caused by the low density lipoprotein fraction. We conclude that the ablation of CD36 prevented the negative impact of hypercholesterolemia on agonist-stimulated nitric oxide-mediated vasodilation in apoE null mice. These studies provide a direct link between CD36 and the early events that underlie hypercholesterolemia-mediated hypertension and mechanistic linkages between CD36 function, nitric-oxide synthase activation, caveolae integrity, and blood pressure regulation.


Assuntos
Vasos Sanguíneos/fisiopatologia , Antígenos CD36/fisiologia , Hipercolesterolemia/fisiopatologia , Óxido Nítrico Sintase/fisiologia , Acetilcolina/farmacologia , Animais , Cavéolas/fisiologia , Ciclodextrinas/toxicidade , Hipercolesterolemia/complicações , Hipertensão/etiologia , Lipoproteínas LDL/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Fosforilação , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA