Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(7): e0007595, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356611

RESUMO

Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013-2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50-80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or therapeutic regimen.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Musa/química , Lectinas de Plantas/farmacologia , Animais , Antivirais/síntese química , Linhagem Celular Tumoral , Ebolavirus/genética , Ebolavirus/imunologia , Escherichia coli , Feminino , Engenharia Genética , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Lectinas de Plantas/síntese química , Replicação Viral/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-26153136

RESUMO

Cancer therapies of the future will rely on synergy between drugs delivered in combination to achieve both maximum efficacy and decreased toxicity. Nanoscale drug delivery vehicles composed of highly tunable nanomaterials ('nanocarriers') represent the most promising approach to achieve simultaneous, cell-selective delivery of synergistic ratios of combinations of drugs within solid tumors. Nanocarriers are currently being used to co-encapsulate and deliver synergistic ratios of multiple anticancer drugs to target cells within solid tumors. Investigators exploit the unique environment associated with solid tumors, termed the tumor microenvironment (TME), to make 'smart' nanocarriers. These sophisticated nanocarriers exploit the pathological conditions in the TME, thereby creating highly targeted nanocarriers that release their drug payload in a spatially and temporally controlled manner. The translational and commercial potential of nanocarrier-based combinatorial nanomedicines in cancer therapy is now a reality as several companies have initiated human clinical trials.


Assuntos
Técnicas de Química Combinatória/métodos , Nanomedicina/métodos , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA