Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 6025-6036, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408197

RESUMO

The formation of isolable monatomic BiI complexes and BiII radical species is challenging due to the pronounced reducing nature of metallic bismuth. Here, we report a convenient strategy to tame BiI and BiII atoms by taking advantage of the redox noninnocent character of a new chelating bis(germylene) ligand. The remarkably stable novel BiI cation complex 4, supported by the new bis(iminophosphonamido-germylene)xanthene ligand [(P)GeII(Xant)GeII(P)] 1, [(P)GeII(Xant)GeII(P) = Ph2P(NtBu)2GeII(Xant)GeII(NtBu)2PPh2, Xant = 9,9-dimethyl-xanthene-4,5-diyl], was synthesized by a two-electron reduction of the cationic BiIIII2 precursor complex 3 with cobaltocene (Cp2Co) in a molar ratio of 1:2. Notably, owing to the redox noninnocent character of the germylene moieties, the positive charge of BiI cation 4 migrates to one of the Ge atoms in the bis(germylene) ligand, giving rise to a germylium(germylene) BiI complex as suggested by DFT calculations and X-ray photoelectron spectroscopy (XPS). Likewise, migration of the positive charge of the BiIIII2 cation of 3 results in a bis(germylium)BiIIII2 complex. The delocalization of the positive charge in the ligand engenders a much higher stability of the BiI cation 4 in comparison to an isoelectronic two-coordinate Pb0 analogue (plumbylone; decomposition below -30 °C). Interestingly, 4[BArF] undergoes a reversible single-electron transfer (SET) reaction (oxidation) to afford the isolable BiII radical complex 5 in 5[BArF]2. According to electron paramagnetic resonance (EPR) spectroscopy, the unpaired electron predominantly resides at the BiII atom. Extending the redox reactivity of 4[OTf] employing AgOTf and MeOTf affords BiIII(OTf)2 complex 7 and BiIIIMe complex 8, respectively, demonstrating the high nucleophilic character of BiI cation 4.

2.
Small ; : e2309749, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368266

RESUMO

Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3 ) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.

3.
Acc Chem Res ; 56(4): 475-488, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36720115

RESUMO

ConspectusSilylenes are divalent silicon species with an unoccupied 3p orbital and one lone pair of electrons at the SiII center. Owing to the excellent σ-donating ability of amidinato-based silylenes, which stems from the intramolecular imino-N donor interaction with the vacant 3p orbital of the silicon atom, N-heterocyclic amidinato bis(silylenes) [bis(NHSi)s] can serve as versatile strong donating ligands for cooperative stabilization of central atoms in unusually low oxidation states. Herein, we present our recent achievement on the application of bis(NHSi) ligands with electronically and spatially different spacers to main-group chemistry, which has allowed the isolation of a variety of low-valent compounds consisting of monatomic zero-valent group 14 E0 complexes (named "metallylones", E = Si, Ge, Sn, Pb); monovalent group 15 EI complexes (E = N, P, isoelectronic with metallylones); and diatomic low-valent E2 complexes (E = Si, Ge, P) with intriguing electronic structures and chemical reactivities.The role of the SiII···SiII distance was revealed to be crucial in this chemistry. Utilizing the pyridine-based bis(NHSi) (Si···Si distance: 7.8 Å) ligand, germanium(0) complexes with additional Fe(CO)4 protection at the Ge0 site have been isolated. Featuring a shorter Si···Si distance of 4.3 Å, the xanthene-based bis(NHSi) has allowed the realization of the full series of heavy zero-valent group 14 element E0 complexes (E = Si, Ge, Sn, Pb), while the o-carborane-based bis(NHSi) (Si···Si distance: 3.3 Å) has enabled the isolation of Si0 and Ge0 complexes. Remarkably, reduction of the o-carborane-based bis(NHSi)-supported Si0 and Ge0 complexes induces the movement of two electrons into the o-carborane core and provides access to SiI-SiI and GeI-GeI species as oxidation products. Additionally, the o-carborane-based bis(NHSi) reacts with adamantyl azide, leading to a series of nitrogen(I) complexes as isoelectronic species of a carbone (C0 complex). Moreover, cooperative activation of white phosphorus gives bis(NHSi)-supported phosphorus complexes with varying and unexpected electronic structures when employing the xanthene-, o-carborane-, and aniline-based bis(NHSi)s. With the better kinetic protection provided by the xanthene-based bis(NHSi), small-molecule activation and functionalization of the bis(NHSi)-supported central E or E2 atoms (E = Si, Ge, P) are possible and furnish several novel functionalized silicon, germanium, and phosphorus compounds.With knowledge of the ability of chelating bis(NHSi)s in coordinating and functionalizing low-valent group 14 and 15 elements, the application of these ligand systems to other main-group elements such as group 2 and 13 is quite promising. To fully understand the role of the NHSi in a bis(NHSi) ligand, introducing a mixed ligand, i.e., the combination of an NHSi with other functional groups, such as Lewis acidic borane or Lewis basic borylene, in one chelating ligand could lead to new types of low-valent main-group species. Furthermore, the development of a genuine acyclic silylene, without an imino-N interaction with the vacant 3p orbital at the silicon(II) atom, as part of a chelating bis(acyclic silylene) has the potential to form very electronically different main-group element complexes that could achieve even more challenging bond activations such as N2 or unactivated C-H bonds.

4.
J Am Chem Soc ; 145(13): 7084-7089, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943751

RESUMO

For a long time, planar tetracoordinate carbon (ptC) represented an exotic coordination mode in organic and organometallic chemistry, but it is now a useful synthetic building block. In contrast, realization of planar tetracoordinate silicon (ptSi), a heavier analogue of ptC, is still challenging. Herein we report the successful synthesis and unusual reactivity of the first ptSi species of divalent silicon present in 3, supported by the chelating bis(N-heterocyclic silylene)bipyridine ligand, 2,2'-{[(4-tBuPh)C(NtBu)]2SiNMe}2(C5N)2, 1]. The compound resulted from direct reaction of 1 with Idipp-SiI2 [Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Alternatively, it can also be synthesized by a two-electron reduction of the corresponding Si(IV) precursor 2 with 2 molar equiv of KC10H8. Density functional theory calculations show that the lone pair at the ptSi(II) resides almost completely in its 3pz orbital, very different from known four-coordinate silylenes. Oxidative addition of MeI to the ptSi(II) atom affords the corresponding pentacoordinate Si(IV) compound 4, with the methyl group located in an apical position. Remarkably, the reaction of 2 with [CuOtBu] leads to the regeneration of the bis(silylene) arms via Si-Si bond scission and induces the Si(II) → Si(IV) oxidation of the central Si(II) atom and concomitant two-electron reduction of the bipyridine moiety to form the neutral bis(silylene)silyl Cu(I) complex 5.

5.
Small ; 19(33): e2301258, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086146

RESUMO

The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.

6.
Small ; 19(16): e2206679, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651137

RESUMO

The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.

7.
Angew Chem Int Ed Engl ; 62(20): e202302969, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37070370

RESUMO

Robert (Bob) Culbertson West passed away on October 12, 2022. Along with his pioneering contributions in the field of organosilicon chemistry, he will be remembered as an outstanding researcher who brought together many extraordinary talents and interests in addition to science.

8.
Angew Chem Int Ed Engl ; 62(10): e202209437, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541062

RESUMO

Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe-Fe distances of 2.5-3.4 Šwere attributed to "open" or "closed" cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII 2 (µ-O)2 complex (2) with tetrahedral (4C) centres and short Fe-Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe-µ-O bonds. A ≈2.5 ŠFe-Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2 (µ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe-Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology.


Assuntos
Ferro , Oxigênio , Ferro/química , Análise Espectral , Cristalografia por Raios X , Oxigênio/química , Oxirredução
9.
Angew Chem Int Ed Engl ; 61(28): e202205358, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502702

RESUMO

New types of metal-free white phosphorus (P4 ) activation are reported. While the phosphine-silylene-substituted dicarborane 1, CB-SiP (CB=ortho-C,C'-C2 B10 H10 , Si=PhC(tBuN)2 Si, P=P[N(tBu)CH2 ]2 ), activates white phosphorus in a 2 : 1 molar ratio to yield the P5 -chain containing species 2, the analogous bis(silylene)-substituted compound 3, CB-Si2 , reacts with P4 in the molar ratio of 2 : 1 to furnish the first isolable 1,3-diphospha-2,4-disilabutadiene (Si=P-Si=P-containing) compound 4. For the latter reaction, two intermediates having a CB-Si2 P4 and CB-Si2 P2 core could be observed by multinuclear NMR spectroscopy. The compounds 2 and 4 were characterized including single-crystal X-ray diffraction analyses. Their electronic structures and mechanisms were investigated by density functional theory calculations.

10.
Angew Chem Int Ed Engl ; 61(38): e202209442, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35848899

RESUMO

The elusive plumbylone {[SiII (Xant)SiII ]Pb0 } 3 stabilized by the bis(silylene)xanthene chelating ligand 1, [SiII (Xant)SiII =PhC(NtBu)2 Si(Xant)Si(NtBu)2 CPh], and its isolable carbonyl iron complex {[SiII (Xant)SiII ]Pb0 Fe(CO)4 } 4 are reported. The compounds 3 and 4 were obtained stepwise via reduction of the lead(II) dibromide complex {[SiII (Xant)SiII ]PbBr2 } 2, prepared from the bis(silylene)xanthene 1 and PbBr2 , employing potassium naphthalenide and K2 Fe(CO)4 , respectively. While the genuine plumbylone 3 is rather labile even at -60 °C, its Pb0 →Fe(CO)4 complex 4 turned out to be relatively stable and bottleable. However, solutions of 4 decompose readily to elemental Pb and {[SiII (Xant)SiII ]Fe(CO)3 } 5 at 80 °C. Reaction of 4 with [Rh(CO)2 Cl]2 leads to the formation of the unusual dimeric [(OC)2 RhPb(Cl)Fe(CO)4 ] complex 6 with trimetallic Rh-Pb-Fe bonds. The molecular and electronic structures of 3 and 4 were established by Density Functional Theory (DFT) calculations.

11.
Angew Chem Int Ed Engl ; 61(2): e202110398, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34670015

RESUMO

The reactivity of the 1,4-substituted bis(silylenyl)terphenylene 1, 1,4-[ortho-(LSi)C6 H4 ]2 C6 H4 , (L=RC(NtBu)2 , R=Ph, Mes) towards CS2 is reported. It results in a dearomatization of the phenylene ring, affording the 1,3-substituted cyclohexadiene derivative 2. According to DFT calculations, a transient silene containing a Si=C bond capable of π(C=C) addition at the aromatic phenylene ring is a key intermediate. In contrast, addition of CS2 to the biphenyl-substituted mono-silylene ortho-(LSi)C6 H4 -C6 H5 3 leaves the aromatic π-system intact and forms, in a [1+2] cycloaddition reaction, the corresponding thiasilirane 4 with a three-membered SiSC ring. Further experimental studies led to the isolation of the novel mesoionic five-membered Si2 S2 C heterocycle 6, which reacts with CS2 under C-C bond formation. All isolated new compounds were fully characterized and their molecular structures determined by single-crystal X-ray diffraction analyses.

12.
Angew Chem Int Ed Engl ; 61(7): e202114598, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34766416

RESUMO

Herein, we report the efficient degradation of N2 O with a well-defined bis(silylene)amido iron complex as catalyst. The deoxygenation of N2 O using the iron silanone complex 4 as a catalyst and pinacolborane (HBpin) as a sacrificial reagent proceeds smoothly at 50 °C to form N2 , H2 , and (pinB)2 O. Mechanistic studies suggest that the iron-silicon cooperativity is the key to this catalytic transformation, which involves N2 O activation, H atom transfer, H2 release and oxygenation of the boron sites. This approach has been further developed to enable catalytic reductions of nitro compounds, producing amino-boranes with good functional-group tolerance and excellent chemoselectivity.

13.
Angew Chem Int Ed Engl ; 61(3): e202114073, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787947

RESUMO

The monoatomic zero-valent tin complex (stannylone) {[SiII (Xant)SiII ]Sn0 } 5 stabilized by a bis(silylene)xanthene ligand, [SiII (Xant)SiII =PhC(NtBu)2 Si(Xant)Si(NtBu)2 CPh], and its bis-tetracarbonyliron complex {[SiII (Xant)SiII ]Sn0 [Fe(CO)4 ]2 } 4 are reported. The stannylone 5 bearing a two-coordinate zero-valent tin atom is synthesized by reduction of the precursor 4 with potassium graphite. Compound 4 results from the SnII halide precursor {[SiII (Xant)SiII ]SnII Cl}Cl 2 or {[SiII (Xant)SiII ]SnBr2 } 3 through reductive salt-metathesis reaction with K2 Fe(CO)4 . According to density functional theory (DFT) calculations, the highest occupied molecular orbital (HOMO) and HOMO-1 of 5 correspond to a π-type lone pair with delocalization into both adjacent vacant orbitals of the SiII atoms and a σ-type lone pair at the Sn0 center, respectively, indicating genuine stannylone character.

14.
Angew Chem Int Ed Engl ; 61(37): e202209250, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876267

RESUMO

White phosphorus (P4 ) undergoes degradation to P2 moieties if exposed to the new N,N-bis(silylenyl)aniline PhNSi2 1 (Si=Si[N(tBu)]2 CPh), furnishing the first isolable 2,5-disila-3,4-diphosphapyrrole 2 and the two novel functionalized Si=P doubly bonded compounds 3 and 4. The pathways for the transformation of the non-aromatic 2,5-disila-3,4-diphosphapyrrole PhNSi2 P2 2 into 3 and 4 could be uncovered. It became evident that 2 reacts readily with both reactants P4 and 1 to afford either the polycyclic Si=P-containing product [PhNSi2 P2 ]2 P2 3 or the unprecedented conjugated Si=P-Si=P-Si=NPh chain-containing compound 4, depending on the employed molar ratio of 1 and P4 as well as the reaction conditions. Compounds 3 and 4 can be converted into each other by reactions with 1 and P4 , respectively. All new compounds 1-4 were unequivocally characterized including by single-crystal X-ray diffraction analysis. In addition, the electronic structures of 2-4 were established by Density Functional Theory (DFT) calculations.

15.
J Am Chem Soc ; 143(16): 6229-6237, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852310

RESUMO

The first Ge(0)-Ge(II) germylone-germylene-paired Ge2 complex (LSi)2Ge2 (4) and the molecular Ge4 cluster (LSi)2Ge4 (5) supported by the chelating carbanionic ortho-C,C'-dicarborandiyl-silylene ligand LSi [L = C,C'-C2B10H10, Si = PhC(tBuN)2Si] have been synthesized and isolated via reduction of the corresponding precursors chlorogermyl-germyliumylidene chloride (2), [(LSi)2Ge(Cl)Ge]+Cl-, and (LSi)2Ge4Cl4 (3) with C8K, respectively. The latter precursors were obtained from the unexpected outcome of the reaction of the ortho-C,C'-dicarborandiyl phosphine-silylene ligand PLSi (1) {P = P[N(tBu)CH2]2} and GeCl2·dioxane. Compound 2 is formed in higher yields (65% yields) by the salt metathesis reaction of the C-lithium dicarborandiyl-C'-silylene salt LiLSi (6) [Li = Li(OEt2)2] with GeCl2·dioxane. The molecular structures of all these species (1-6) have been established and confirmed spectroscopically and crystallographically. The electronic structures of 4 and 5 were elucidated by density functional theory calculations. While 4 possesses a localized dative Ge(0)→Ge(II) bond, the Ge-Ge σ bonds in 5 are delocalized in the Ge4 cluster core. Featuring a donor-acceptor interaction between two chelating silylenes and the Ge4 core, compound 5 represents a unique molecular model for a Ge4 cluster.

16.
Chemistry ; 27(7): 2476-2482, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33105041

RESUMO

Chelating phosphines have long been a mainstay as efficient directing ligands in transition-metal catalysis. Low-valent derivatives, namely chelating phosphinidenes, are to date unknown, and could lead to chelating complexes containing more than one metal centre due to the intrisic capacity of phosphinidenes to bind two metal fragments at one P-centre. Here we describe the synthesis of the first such chelating bis-phosphinidene ligand, XantP2 (2), generated by the reduction of a diphosphino xanthene derivative, Xant(PH2 )2 (1) with iPr NHC (iPr NHC=[:C{N(iPr)C(H)}2 ]). Initial studies have shown that this novel chelating ligand can act as a bidentate ligand towards element dihalides (i.e. FeCl2 , ZnI2 , GeCl2 , SnBr2 ), forming cationic complexes with the tetryl elements. In contrast, XantP2 demonstrates an ability to bind multiple metal centres in the reaction with CuCl, leading to a cationic Cu3 P3 ring complex, with Cu centres bridged by phosphinidene arms. Density Functional Theory calculations show that 2 indeed holds 4 lone pairs of electrons, shedding further light on the coordination capacity for this novel ligand class through observation of directionality and hybridisation of these electron pairs.

17.
Inorg Chem ; 60(8): 5483-5487, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33797227

RESUMO

There is an increasing interest to replace precious metal-based catalysts by earth-abundant nonprecious metals due to higher costs, toxicity, and declining availability of the former. Here, the synthesis of a well-defined supported nickel hydrogenation catalyst prepared by surface organometallic chemistry is reported. For this purpose, [LNi(µ-H)]2 (L = HC(CMeNC6H3(iPr)2)2) was grafted on partially dehydroxylated silica to give a homobimetallic H- and O(silica)-bridged Ni2 complex. The structure of the latter was confirmed by infrared spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure analyses as well as hydride titration studies. The immobilized catalyst was capable of hydrogenating alkenes and alkynes at low temperatures without prior activation. As an example, ethene can be hydrogenated with an initial turnover frequency of 25.5 min-1 at room temperature.

18.
Chem Soc Rev ; 49(18): 6733-6754, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32812591

RESUMO

Small molecules such as H2, N2, CO, NH3, O2 are ubiquitous stable species and their activation and role in the formation of value-added products are of fundamental importance in nature and industry. The last few decades have witnessed significant advances in the chemistry of heavy low-coordinate main-group elements, with a plethora of newly synthesised functional compounds, behaving like transition-metal complexes with respect to facile activation of such small molecules. Among them, silylenes have received particular attention in this vivid area of research showing even metal-free bond activation and catalysis. Recent striking discoveries in the chemistry of silylenes take advantage of narrow HOMO-LUMO energy gap and Lewis acid-base bifunctionality of divalent Si centres. The review is devoted to recent advances of using isolable silylenes and corresponding silylene-metal complexes for the activation of fundamental but inert molecules such as H2, COx, N2O, O2, H2O, NH3, C2H4 and E4 (E = P, As).

19.
Angew Chem Int Ed Engl ; 60(24): 13656-13660, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826216

RESUMO

A facile synthesis and isolation of pristine silicon tetrakis(trifluoromethanesulfonate), Si(OTf)4 , is reported, acting as the first neutral silicon-based Lewis superacid suitable towards soft and hard Lewis bases. Its OTf groups have a dual function: they are excellent leaving groups and modulate the degree of reactivity towards soft and hard Lewis bases. Exposed to soft Lewis donors, Si(OTf)4 leads to [L2 Si(OTf)4 ] complexes (L=isocyanide, thioether and carbonyl compounds) with retention of all Si-OTf bonds. In contrast, it can cleave C-X bonds (X=F, Cl) of hard organic Lewis bases with a high tendency to form SiX4 (X=F, Cl) after halide/triflate exchange. Most notable, Si(OTf)4 allows a gentle oxydefluorination of mono- and bis(trifluoromethyl)benzenes, resulting in the formation of the corresponding benzoylium species, which are stabilized by the weakly coordinating [Si(OTf)6 ] dianion.

20.
Angew Chem Int Ed Engl ; 60(27): 14864-14868, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33909944

RESUMO

Using the chelating C,C'-bis(silylenyl)-ortho-dicarborane ligand, 1,2-(RSi)2 -1,2-C2 B10 H10 [R=PhC(NtBu)2 ], leads to the monoatomic zero-valent Ge complex ("germylone") 3. The redox non-innocent character of the carborane scaffold has a drastic influence on the reactivity of 3 towards reductants and oxidants. Reduction of 3 with one molar equivalent of potassium naphthalenide (KC10 H8 ) causes facile oxidation of Ge0 to GeI along with a two-electron reduction of the C2 B10 cluster core and subsequent GeI -GeI coupling to form the dianionic bis(silylene)-supported Ge2 complex 4. In contrast, oxidation of 3 with one molar equivalent of [Cp2 Fe][B{C6 H3 (CF3 )2 }4 ] as a one-electron oxidant furnishes the dicationic bis(silylene)-supported Ge2 complex 5. The Ge0 atom in 3 acts as donor towards GeCl2 to form the trinuclear mixed-valent Ge0 →GeII ←Ge0 complex 6, from which dechlorination with KC10 H8 affords the neutral Ge2 complex 7 as a diradical species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA