Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochemistry (Mosc) ; 89(5): 883-903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880649

RESUMO

Immune system and bone marrow stromal cells play an important role in maintaining normal hematopoiesis. Lymphoid neoplasia disturbs not only development of immune cells, but other immune response mechanisms as well. Multipotent mesenchymal stromal cells (MSCs) of the bone marrow are involved in immune response regulation through both intercellular interactions and secretion of various cytokines. In hematological malignancies, the bone marrow stromal microenvironment, including MSCs, is altered. Aim of this study was to describe the differences of MSCs' immunological function in the patients with acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). In ALL, malignant cells arise from the early precursor cells localized in bone marrow, while in DLBCL they arise from more differentiated B-cells. In this study, only the DLBCL patients without bone marrow involvement were included. Growth parameters, surface marker expression, genes of interest expression, and secretion pattern of bone marrow MSCs from the patients with ALL and DLBCL at the onset of the disease and in remission were studied. MSCs from the healthy donors of corresponding ages were used as controls. It has been shown that concentration of MSCs in the bone marrow of the patients with ALL is reduced at the onset of the disease and is restored upon reaching remission; in the patients with DLBCL this parameter does not change. Proliferative capacity of MSCs did not change in the patients with ALL; however, the cells of the DLBCL patients both at the onset and in remission proliferated significantly faster than those from the donors. Expression of the membrane surface markers and expression of the genes important for differentiation, immunological status maintenance, and cytokine secretion differed significantly in the MSCs of the patients from those of the healthy donors and depended on nosology of the disease. Secretomes of the MSCs varied greatly; a number of proteins associated with immune response regulation, differentiation, and maintenance of hematopoietic stem cells were depleted in the secretomes of the cells from the patients. Lymphoid neoplasia leads to dramatic changes in the functional immunological status of MSCs.


Assuntos
Linfoma Difuso de Grandes Células B , Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Células da Medula Óssea/imunologia , Proliferação de Células , Adulto Jovem
2.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240298

RESUMO

In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Medula Óssea/metabolismo , Secretoma , Diferenciação Celular , Leucemia Mieloide Aguda/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
Biochemistry (Mosc) ; 86(2): 207-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832419

RESUMO

The properties of bone marrow (BM)-derived multipotent mesenchymal stromal cells (MSCs) are altered in the patients with the diffuse large B cell lymphoma (DLBCL) without BM involvement. It was suggested that plasma from the patients contains soluble factors that affect MSCs. Plasma and BM-derived MSCs from the DLBCL patients at the onset of the disease and one month after the end of treatment were studied. Concentration of the plasma cytokines and gene expression in the MSCs were evaluated by the Bio-Plex Pro Human Cytokine Panel kit to measure 27 analytes and real-time PCR. Plasma and MSCs from the healthy donors were used as controls. Analysis of cytokines in the plasma from healthy donors and patients before and one month after the end of treatment revealed significant differences in the concentration of 14 out of 27 cytokines. Correlations between the levels of secreted cytokines were altered in the plasma from patients indicating that the immune response regulation was disturbed. Cultivation of the MSCs from the healthy donors in the medium supplemented with the plasma from patients led to the changes in the MSC properties, similar to those observed in the MSCs from patients. The BM-derived MSCs were shown to participate in the humoral changes occurring in the DLBCL patients. For the first time, it was shown that the precursors of the stromal microenvironment - multipotent mesenchymal stromal cells - are altered in the patients with DLBCL without bone marrow involvement due to the humoral effect of the tumor and the response of organism to it. Comprehensive analysis of the results shows that, when remission is achieved in the patients with DLBCL, composition of the plasma cytokines normalizes, but does not reach the level observed in the healthy donors. The discovery of a new aspect of the effect of the tumor B-cells on the organism could help to reveal general regularities of the humoral effect of various tumors on the bone marrow stromal cells.


Assuntos
Citocinas/sangue , Linfoma Difuso de Grandes Células B/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Adulto , Idoso , Medula Óssea/metabolismo , Feminino , Humanos , Linfoma Difuso de Grandes Células B/sangue , Linfoma Difuso de Grandes Células B/terapia , Masculino , Pessoa de Meia-Idade
4.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502137

RESUMO

In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.


Assuntos
Envelhecimento/sangue , Hematopoese , Células-Tronco Hematopoéticas/citologia , Envelhecimento/metabolismo , Animais , Medula Óssea/crescimento & desenvolvimento , Humanos
5.
Eur J Haematol ; 97(3): 245-52, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26643284

RESUMO

BACKGROUND: The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. METHODS: MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. RESULTS: The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. CONCLUSIONS: The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Leucemia/patologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Medula Óssea/patologia , Estudos de Casos e Controles , Contagem de Células , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Eur J Haematol ; 96(4): 425-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26115424

RESUMO

BACKGROUND: Multipotent mesenchymal stromal cells (MSCs) are used for prophylaxis of acute graft-versus-host disease (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Not all samples of MSC are efficient for aGvHD prevention. The suitability of MSCs for aGvHD prophylaxis was studied. METHODS: MSCs were derived from the bone marrow (BM) of HCT donor and cultivated for no more than three passages. The characteristics of donor BM samples including colony-forming unit fibroblast (CFU-F) concentration, growth parameters of MSCs, and the relative expression levels (REL) of different genes were analyzed. MSCs were injected intravenously precisely at the moment of blood cell reconstitution. RESULTS: MSCs infusion induced a significant threefold decrease in aGvHD development and improved overall survival compared with the standard prophylaxis group. In ineffective MSC samples (9.4%), a significant decrease in total cell production and the REL of CSF1, FGFR1, and PDGFRB was observed. In all studied BM samples, the cumulative MSC production and CFU-F concentrations decreased with age. The expression levels of FGFR2, PPARG, and VEGF differed by age. CONCLUSIONS: A universal single indicator for the prediction of MSC eligibility for aGvHD prophylaxis was not identified. A multiparameter mathematical model for selecting MSC samples effective for the prevention of aGvHD was proposed.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Agonistas Mieloablativos/uso terapêutico , Condicionamento Pré-Transplante/métodos , Adolescente , Adulto , Feminino , Expressão Gênica , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/terapia , PPAR gama/genética , PPAR gama/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/imunologia , Análise de Sobrevida , Transplante Homólogo
7.
Cytokine ; 71(2): 246-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25461405

RESUMO

Multipotent mesenchymal stromal cells (MMSCs) have been demonstrated to produce mature stromal cells and maintain hematopoietic progenitor cells (HPC). It was previously demonstrated that interleukin-1 beta (IL-1 beta) stimulates the growth of the stromal microenvironment in vivo. The aim of this study was to investigate the effect of IL-1 beta treatment of human MMSCs on their proliferative potential, gene expression, immunomodulating properties, and their ability to support HPCs in vitro. Human bone marrow-derived MMSCs were cultivated in standard conditions or with IL-1 beta. The cumulative cell production was assessed for five passages. After withdrawal of IL-1 beta, MMSC clonal efficiency was investigated, and the maintenance of HPCs on top of MMSCs layers was estimated using cobblestone area forming cell (CAFC) and long-term culture initiating cell (LTC-IC) assays. The effect of untreated MMSCs or MMSCs pretreated with IL-1 beta on lymphocyte proliferation was studied by CFSE staining. The relative expression level of various genes by MMSCs was analyzed using RT-qPCR. The administration of IL-1 beta elevated MMSCs clonal efficiency and total cell production but did not affect lymphocyte proliferation. MMSCs pretreatment with IL-1 beta enhanced their ability to maintain HPCs, as detected by CAFC assay, and it altered the expression levels of genes participating in HPC regulation by stromal cells, e.g., adhesion molecules (ICAM1) and growth factors (SDF1). This study revealed the ability of IL-1 beta to stimulate MMSCs proliferation and enhance their potential to maintain HPCs. MMSCs are considered a stromal niche component in vitro. The combined in vitro and previous in vivo data suggest that IL-1 beta is a systemic regulator of the stromal microenvironment.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-1beta/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adolescente , Adulto , Células Cultivadas , Quimiocina CXCL12/genética , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/genética , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
8.
Cytokine ; 64(1): 131-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962752

RESUMO

Gamma irradiation of tissues and organs leads to many pathological consequences due to the formation of reactive oxygen species, DNA damage and the subsequent massive death of cells. The therapeutic use of gamma irradiation in the treatment of cancer is based on its penetrating power and damaging effects on tumor cells. Other effects from the irradiation are unnoticeable in comparison. Moreover, the long-term consequences of gamma irradiation are still poorly understood. When a donor bone marrow plug is implanted under the renal capsule of a syngeneic animal, а hematopoietic ectopic focus is formed. The size of the focus is increased in mice that received irradiation compared to non-irradiated ones, regardless of the amount of time between irradiation and bone marrow plug implantation. Long-term repetitive injections of blood serum from irradiated mice given to syngeneic non-irradiated recipients of bone marrow plugs also lead to the formation of enlarged foci. Hence, the blood of irradiated animals must contain an activity that induces the growth of a hematopoietic microenvironment. It was previously shown that the bones of irradiated animals secrete a growth factor required to create stromal microenvironments. The identity of this factor has, until now, been difficult to obtain. We demonstrated that interleukin 1 beta (IL-1) stimulates the growth of murine bone marrow stromal cells in vitro and in vivo. It was shown that the expression of the Il1b gene and the secretion of its product, IL-1, were activated in bone cells long after total body gamma irradiation. Hence, IL-1, or proteins regulated by this cytokine, appears to be the same stromal growth factor previously observed in the serum of irradiated animals. Our data demonstrate several non-canonical functions of IL-1. In addition, the presence of up-regulated levels of IL-1 long after irradiation points to an unknown mechanism governing its gene expression.


Assuntos
Células da Medula Óssea/efeitos da radiação , Interleucina-1beta/biossíntese , Células-Tronco Mesenquimais/efeitos da radiação , Animais , Células da Medula Óssea/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Proliferação de Células/efeitos da radiação , Células Cultivadas , Quimera , Feminino , Raios gama , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
9.
Transplant Cell Ther ; 29(2): 109.e1-109.e10, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372356

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are currently under intensive investigation for the treatment and prevention of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), owing to their substantial immunomodulatory properties. The responses of recipients to MSC infusion following allo-HSCT are not yet well understood. T cells are central to the adaptive immune system, protecting the organism from infection and malignant cells. Memory T cells with different phenotypes, gene expression profiles, and functional properties are critical for immune processes regulation. The aim of this study was to study the dynamics of memory T cell subpopulations and cytokines in the blood of allo-HSCT recipients after MSC administration. In clinical trial NCT01941394, patients after allo-HSCT were randomized into 2 groups, one receiving standard GVHD prophylaxis and the other also receiving MSC infusion on the day of leukocyte recovery to 1000 cells/µL (engraftment, day E0). Blood samples of patients from both groups were analyzed on days E0, E+3, and E+30. T cell subpopulations were studied by flow cytometry, and cytokine concentrations were evaluated by the Bio-Plex Pro Human Cytokine Panel. Administration of MSCs to patients on day E0 did not affect the overall dynamics of restoration of absolute numbers and proportions of T and B lymphocytes after 3 and 30 days. At 3 days after MSC injection, only the numbers of CD8+ effector cells (CD8+TE, CD8+TM, and CD8+EM) were found to increase significantly. A significant increase in the number of CD4+ cells after 30 days compared to day E0 was observed only in patients who received MSCs, indicating faster recovery of the CD4+ cell population following MSC injection. An increase in CD8+ cell number by day E+30 was significant regardless of MSC administration. To characterize the immune status of patients following allo-HSCT in more detail, changes in the cytokine concentration in the peripheral blood of patients on days E0, E+3, and E+30 after MSC administration were investigated. On day E+30, significant increases in the numbers of CD4+CM and activated CD4+CD25+ cells were observed. The concentrations of proinflammatory and anti-inflammatory cytokines IL-6, IL-8, IL-17, TNF-α, and IFN-γ were increased significantly in patients injected with MSCs. Analysis of growth factor levels showed that in the group of patients who received MSCs, the concentrations of G-CSF, GM-CSF, PDGFbb, FGFb, and IL-5 increased by day E+30. Among the cytokines involved in regulation of the immune response, concentrations of IL-9, eotaxin, IP-10, MCP-1, and MIP-1a were increased after 30 days irrespective of MSC administration. The administration of MSCs exerts a positive effect on the restoration of T cell subpopulations and immune system recovery in patients after allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Citocinas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células-Tronco Mesenquimais/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle
10.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672203

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are an object of intense investigation due to their therapeutic potential. MSCs have been well studied in vitro, while their fate after implantation in vivo has been poorly analyzed. We studied the properties of MSCs from the bone marrow (BM-MSC) before and after implantation under the renal capsule using a mini pig model. Autologous BM-MSCs were implanted under the kidney capsule. After 2.5 months, ectopic foci containing bones, foci of ectopic hematopoiesis, bone marrow stromal cells and muscle cells formed. Small pieces of the implant were cultivated as a whole. The cells that migrated out from these implants were cultured, cloned, analyzed and were proven to meet the most of criteria for MSCs, therefore, they are designated as MSCs from the implant-IM-MSCs. The IM-MSC population demonstrated high proliferative potential, similar to BM-MSCs. IM-MSC clones did not respond to adipogenic differentiation inductors: 33% of clones did not differentiate, and 67% differentiated toward an osteogenic lineage. The BM-MSCs revealed functional heterogeneity after implantation under the renal capsule. The BM-MSC population consists of mesenchymal precursor cells of various degrees of differentiation, including stem cells. These newly discovered properties of mini pig BM-MSCs reveal new possibilities in terms of their manipulation.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Suínos , Animais , Células da Medula Óssea , Porco Miniatura , Músculos , Rim
11.
DNA Cell Biol ; 39(5): 790-800, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32176536

RESUMO

Interleukin-1 beta (IL1B) is a key inducer of inflammation and an important factor in the regulation of hematopoietic stem cells and mesenchymal stromal progenitors. Irradiation of mice with ionizing radiation has been shown to induce a lasting increase in IL1B concentration in peripheral blood. One of the possible mechanisms may be demethylation of CpG cytosines in the Il1b promoter, which has not been characterized in detail for the mouse. In this study, the methylation level of CpGs located in a region between -3562 and -208 bp upstream of the start of transcription is studied in muscles, bones, liver, thymus, spleen, bone marrow, lymph nodes, lungs, and brain. The methylation level is compared to Il1b expression. Tissue-specific features of CpG methylation are established. It is demonstrated that the region between -2420 and -2406 bp is likely a part of the mouse Il1b promoter/enhancer and may determine the base level of Il1b expression in various tissues. Irradiation at a dose of 6 Gy does not change the methylation profile of most studied CpGs, and therefore, the cause of the stably increased IL1B level after irradiation is unlikely to be a change in the methylation of the studied CpGs in investigated tissues.


Assuntos
Raios gama , Interleucina-1beta/genética , Regiões Promotoras Genéticas/genética , Animais , Osso e Ossos/metabolismo , Osso e Ossos/efeitos da radiação , Ilhas de CpG/genética , Metilação de DNA/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Regiões Promotoras Genéticas/efeitos da radiação , Fatores de Transcrição/metabolismo
12.
World J Stem Cells ; 12(11): 1377-1395, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33312405

RESUMO

BACKGROUND: Multipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy. AIM: To study the differences between effective and ineffective MSCs. METHODS: MSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1ß, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined. RESULTS: Differences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples. CONCLUSION: For the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.

13.
Acta Haematol ; 119(2): 98-103, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18334847

RESUMO

BACKGROUND/AIMS: The influence of cytostatic medicines on mesenchymal stem cells (MSC) and their progeny, fibroblastic colony-forming units (CFU-F), was investigated. METHODS: Mice were treated with busulfan, cyclophosphamide, cytarabine, methotrexate and bortezomib, as used in clinical practice. MSC and CFU-F were analyzed 3 days and 6 weeks after the treatment termination. To estimate MSC numbers, the ectopic foci formation method was used. Briefly, a donor bone marrow plug was transplanted under the renal capsule of a syngeneic animal, leading to ectopic foci formation. The systemic response of the hematopoietic microenvironment to these drugs was studied using the same method applied to recipients pretreated with the medicines. RESULTS: CFU-F concentration was halved in the bone marrow of mice treated with busulfan, methotrexate and cyclophosphamide, and was not restored for the next 6 weeks. Proliferative potential and differentiation abilities of MSC were not affected by these medicines. The enlargement of foci size in mice treated with cytostatic agents was not conditioned by MSC, but by more mature stromal precursor cells. CONCLUSIONS: Cytostatic medicines affect stromal precursors in 2 ways: they decrease CFU-F concentration in the 'steady-state' bone marrow, while stimulating growth of the stromal microenvironment during its de novo formation. MSC are not sensitive to the cytostatic agents used.


Assuntos
Antineoplásicos/farmacologia , Fibroblastos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Ácidos Borônicos , Bortezomib , Bussulfano , Ciclofosfamida , Citarabina , Feminino , Metotrexato , Camundongos , Camundongos Endogâmicos , Pirazinas , Células Estromais/efeitos dos fármacos
14.
Stem Cells Int ; 2018: 6495018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760731

RESUMO

Multipotent mesenchymal stromal cells (MSCs) participate in the formation of bone marrow niches for hematopoietic stem cells. Donor MSCs can serve as a source of recovery for niches in patients with graft failure (GF) after allogeneic bone marrow (BM) transplantation. Since only few MSCs reach the BM after intravenous injection, MSCs were implanted into the iliac spine. For 8 patients with GF after allo-BMT, another hematopoietic stem cell transplantation with simultaneous implantation of MSCs from their respective donors into cancellous bone was performed. BM was aspirated from the iliac crest of these patients at 1-2, 4-5, and 9 months after the intraosseous injection of donor MSCs. Patients' MSCs were cultivated, and chimerism was determined. In 6 out of 8 patients, donor hematopoiesis was restored. Donor cells (9.4 ± 3.3%) were detected among MSCs. Thus, implanted MSCs remain localized at the site of administration and do not lose the ability to proliferate. These results suggest that MSCs could participate in the restoration of niches for donor hematopoietic cells or have an immunomodulatory effect, preventing repeated rejection of the graft. Perhaps, intraosseous implantation of MSCs contributes to the success of the second transplantation of hematopoietic stem cells and patient survival.

15.
Leuk Lymphoma ; 58(2): 408-417, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27244369

RESUMO

Bone marrow (BM) derived adult multipotent mesenchymal stromal cells (MMSCs) and fibroblast colony-forming units (CFU-Fs) of 20 patients with acute myeloid leukemia (AML) and 15 patients with acute lymphoblastic leukemia (ALL) before and during 1 year after receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) were studied. The growth characteristics of MMSCs of all patients before allo-HSCT were not altered; however, relative expression level (REL) of some genes in MMSCs, but not in CFU-Fs, from AML and ALL patients significantly changed. After allo-HSCT, CFU-F concentration and MMSC production were significantly decreased for 1 year; REL of several genes in MMSCs and CFU-F-derived colonies were also significantly downregulated. Thus, chemotherapy that was used for induction of remission did not impair the function of stromal precursors, but gene expression levels were altered. Allo-HSCT conditioning regimens significantly damaged MMSCs and CFU-Fs, and the effect lasted for at least 1 year.


Assuntos
Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral , Adolescente , Adulto , Biomarcadores , Medula Óssea/metabolismo , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino , Células-Tronco Mesenquimais/metabolismo , Período Pós-Operatório , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Período Pré-Operatório , Fatores de Tempo , Transplante Homólogo , Microambiente Tumoral/genética , Adulto Jovem
16.
Exp Hematol ; 33(8): 873-82, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16038779

RESUMO

OBJECTIVE: Lentiviral transduction is an established method for efficiently modifying the gene expression program of primary cells, but the ability of the introduced construct to persist as an episome has not been well studied. MATERIAL AND METHODS: Here we investigated this issue in lethally irradiated female mice injected with 300 or 3000 doubly sorted male lin(neg), Sca-1(high), c-kit(high), Thy-1.1(low) mouse bone marrow cells that had been exposed in vitro to self-inactivating lentivirus vector encoding a green fluorescence protein (GFP) cDNA. Seven to sixteen months later, bone marrow cells from primary mice were injected into secondary female recipients and another 8 months later into tertiary female recipients. Integration study was performed on individual spleen colonies by Southern blot analysis. Inverse polymerase chain reaction (PCR) and sequence of amplified vector-derived DNA was used to verify Southern blot results. RESULTS: Spleen colony-forming cell study revealed that a small fraction of the spleen colonies contained integrated provirus as shown by Southern blot analysis. Unexpectedly, many spleen colonies were found to contain a nonintegrated episomal form of the provirus, which was confirmed by an inverse PCR analysis. In some of the spleen colonies containing only the episomal form, GFP-expressing cells were also detected. Lentiviral sequences were present in hematopoietic tissues of primary mice but not in other tissues. CONCLUSIONS: These results demonstrate that lentiviral vectors produce episomal circles in hematopoietic stem cells that can be transferred through many cell generations and expressed in their progeny.


Assuntos
Vetores Genéticos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Lentivirus , Plasmídeos , Transdução Genética/métodos , Integração Viral , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Feminino , Vetores Genéticos/fisiologia , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/virologia , Lentivirus/fisiologia , Masculino , Camundongos , Plasmídeos/genética , Plasmídeos/metabolismo , Fatores de Tempo , Quimeras de Transplante/genética , Quimeras de Transplante/fisiologia , Quimeras de Transplante/virologia , Integração Viral/genética , Integração Viral/fisiologia
17.
F1000Res ; 42015.
Artigo em Inglês | MEDLINE | ID: mdl-27081472

RESUMO

The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated.

18.
Hematol J ; 4(1): 74-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12692525

RESUMO

Total cell production and longevity of hematopoiesis in long-term bone marrow culture of tumor necrosis factor (TNF)-deficient mice (LTBM-TNFko) are increased. The rate of apoptosis is decreased during the first 40 weeks in culture, then the level of apoptosis reaches levels of wild-type cultures. Extended lifespan of primary cultures usually is the consequence of the neoplastic transformation. We set out to check this possibility in the LTBM-TNFko. Telomerase activity in suspension fraction (SF) of LTBM-TNFko increases with time and reaches maximum a year after culture initiation. Cytogenetic study reveals genome instability in SF and hyperploidy in the adhesion cell layer (ACL) of LTBM-TNFko. All of the above indicate the possibility of neoplastic transformation. However, histological study of cells and CFU-S-derived colonies of SF does not reveal a block of differentiation. Cells of SF are unable to grow without ACL. Although those cells could proliferate in the presence of exogenous growth factors, they are not able to be passaged. Attempts of passaging ACL cells failed as well. Neither healthy nor sublethally irradiated recipients injected intravenously or intraperitoneally with cells of SF develop tumors within 8 months of observation. In conclusion, abnormal dynamics of long-term bone marrow culture of TNF-deficient mice could not be explained by neoplastic transformation.


Assuntos
Células da Medula Óssea/citologia , Hematopoese , Aneuploidia , Animais , Apoptose , Transplante de Medula Óssea , Adesão Celular , Diferenciação Celular , Divisão Celular , Transformação Celular Neoplásica , Células Cultivadas/citologia , Células Cultivadas/transplante , Ensaio de Unidades Formadoras de Colônias , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Quimera por Radiação , Telomerase/análise , Fatores de Tempo , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
19.
Hematol J ; 4(2): 146-50, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12750734

RESUMO

We have shown previously that hematopoiesis in mice reconstituted with retrovirally marked hematopoietic stem cells (HSCs) is provided by multiple, mainly short-lived clones, as measured by retroviral insertion site analysis of individual spleen colony-forming unit (CFU-S)-derived colonies. However, the CFU-S is the relatively early progenitor and the contribution of each CFU-S in the steady-state hematopoiesis is uncertain. Here, we have studied the fate of individual mature B cells, as well as CFU-S, representing the progeny of retrovirally transduced marrow-repopulating cells (MRC). B-cells-generated hybridomas and CFU-S-derived colonies were used to determine the clonal composition of hematolymphopoiesis at the single-cell level. Bone marrow (BM) cells and splenocytes (approximately 1/3-1/2 of spleen at a time) from mice reconstituted with retrovirally marked syngeneic BM cells were repeatedly collected at 3, 10, and 16 months post-transplant. The percentage of retrovirally marked CFU-S and B-cell-produced hybridomas was about 50% at 3 months and decreased to 10-15% at 10 months after reconstitution in spite of stable degree of chimerism. The clonal origin of BM-derived CFU-S and spleen-derived B-cell hybridomas was detected by Southern blot analysis. Overall, DNA obtained from 159 retrovirally marked spleen colonies, 287 hybridomas and 43 BM samples were studied. Multiple simultaneously functioning clones of MRC-derived B cells were observed. The same individual clones among hybridomas and CFU-S were identified in three out of 11 mice. Thus, hematopoiesis is generated by multiple hematopoietic clones some of which can simultaneously contribute to both mature lymphoid cells and myeloid progenitors. These data establish that the stem cell compartment functions by continuously producing progeny, which fully but transiently repopulate all lineages.


Assuntos
Linfócitos B/citologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Células da Medula Óssea , Linhagem da Célula , Células Clonais/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Hibridomas/citologia , Masculino , Camundongos , Camundongos Endogâmicos , Células Progenitoras Mieloides , Baço/citologia , Transdução Genética
20.
Exp Hematol ; 40(10): 847-56.e4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22728032

RESUMO

Multipotent mesenchymal stromal cells (MMSCs) are a heterogeneous population consisting of cells with a distinct proliferative potential. The aim of this study was to define clonal composition in MMSCs and trace the dynamics of individual clones in MMSC subpopulations with different proliferative potentials during the process of cultivation. The investigation was performed at single-cell level using genetically marked cells. Specifically, human bone marrow MMSCs were infected with a lentiviral vector-bearing marker gene. Integration site analysis was performed for clones at each passage by ligation-mediated polymerase chain reaction and Southern blot hybridization. Sibling connections between clones and clonal composition of MMSC culture at each passage were revealed. The MMSC population contained multiple, different, mainly small, clones. It was found that large long-living clones with a high, but limited proliferative potential could be detected rarely in MMSCs population. These data suggest that the human MMSC population does not fit the "stem cell" criteria, however, MMSCs may contain a subpopulation of large clones with a high proliferative potential.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Marcadores Genéticos , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA