Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Plant Sci ; 12(1): e11567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369982

RESUMO

Premise: Most studies of the movement of orchid fruits and roots during plant development have focused on morphological observations; however, further genetic analysis is required to understand the molecular mechanisms underlying this phenomenon. A precise tool is required to observe these movements and harvest tissue at the correct position and time for transcriptomics research. Methods: We utilized three-dimensional (3D) micro-computed tomography (CT) scans to capture the movement of fast-growing Erycina pusilla roots, and built an integrated bioinformatics pipeline to process 3D images into 3D time-lapse videos. To record the movement of slowly developing E. pusilla and Phalaenopsis equestris fruits, two-dimensional (2D) photographs were used. Results: The E. pusilla roots twisted and resupinated multiple times from early development. The first period occurred in the early developmental stage (77-84 days after germination [DAG]) and the subsequent period occurred later in development (140-154 DAG). While E. pusilla fruits twisted 45° from 56-63 days after pollination (DAP), the fruits of P. equestris only began to resupinate a week before dehiscence (133 DAP) and ended a week after dehiscence (161 DAP). Discussion: Our methods revealed that each orchid root and fruit had an independent direction and degree of torsion from the initial to the final position. Our innovative approaches produced detailed spatial and temporal information on the resupination of roots and fruits during orchid development.

2.
PLoS One ; 18(10): e0286846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815982

RESUMO

Fruits play a crucial role in seed dispersal. They open along dehiscence zones. Fruit dehiscence zone formation has been intensively studied in Arabidopsis thaliana. However, little is known about the mechanisms and genes involved in the formation of fruit dehiscence zones in species outside the Brassicaceae. The dehiscence zone of A. thaliana contains a lignified layer, while dehiscence zone tissues of the emerging orchid model Erycina pusilla include a lipid layer. Here we present an analysis of evolution and development of fruit dehiscence zones in orchids. We performed ancestral state reconstructions across the five orchid subfamilies to study the evolution of selected fruit traits and explored dehiscence zone developmental genes using RNA-seq and qPCR. We found that erect dehiscent fruits with non-lignified dehiscence zones and a short ripening period are ancestral characters in orchids. Lignified dehiscence zones in orchid fruits evolved multiple times from non-lignified zones. Furthermore, we carried out gene expression analysis of tissues from different developmental stages of E. pusilla fruits. We found that fruit dehiscence genes from the MADS-box gene family and other important regulators in E. pusilla differed in their expression pattern from their homologs in A. thaliana. This suggests that the current A. thaliana fruit dehiscence model requires adjustment for orchids. Additionally, we discovered that homologs of A. thaliana genes involved in the development of carpel, gynoecium and ovules, and genes involved in lipid biosynthesis were expressed in the fruit valves of E. pusilla, implying that these genes may play a novel role in formation of dehiscence zone tissues in orchids. Future functional analysis of developmental regulators, lipid identification and quantification can shed more light on lipid-layer based dehiscence of orchid fruits.


Assuntos
Arabidopsis , Brassicaceae , Arabidopsis/genética , Frutas/metabolismo , Brassicaceae/genética , Perfilação da Expressão Gênica , Lipídeos , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA