RESUMO
Celery (Apium graveolens L.) is an important vegetable crop cultivated worldwide for its medicinal properties and distinctive flavor. Volatile organic compound (VOC) analysis is a valuable tool for the identification and classification of species. Currently, less research has been conducted on aroma compounds in different celery varieties and colors. In this study, five different colored celery were quantitatively analyzed for VOCs using HS-SPME, GC-MS determination, and stoichiometry methods. The result revealed that γ-terpinene, d-limonene, 2-hexenal,-(E)-, and ß-myrcene contributed primarily to the celery aroma. The composition of compounds in celery exhibited a correlation not only with the color of the variety, with green celery displaying a higher concentration compared with other varieties, but also with the specific organ, whereby the content and distribution of volatile compounds were primarily influenced by the leaf rather than the petiole. Seven key genes influencing terpenoid synthesis were screened to detect expression levels. Most of the genes exhibited higher expression in leaves than petioles. In addition, some genes, particularly AgDXS and AgIDI, have higher expression levels in celery than other genes, thereby influencing the regulation of terpenoid synthesis through the MEP and MVA pathways, such as hydrocarbon monoterpenes. This study identified the characteristics of flavor compounds and key aroma components in different colored celery varieties and explored key genes involved in the regulation of terpenoid synthesis, laying a theoretical foundation for understanding flavor chemistry and improving its quality.
Assuntos
Apium , Compostos Orgânicos Voláteis , Apium/genética , Cor , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , VerdurasRESUMO
Melatonin (MT) is crucial in plant growth, development, and response to stress. Celery is a vegetable that grows in a cool climate, and a hot climate can deteriorate its growth, yield, and quality. This study investigates the effect of exogenous melatonin on celery physiology. Transcriptional levels were analyzed by spraying celery with exogenous MT before exposing it to high temperatures. The regulatory mechanism of exogenous MT-mediated heat tolerance was examined. The results show that the exogenous MT reduced the thermal damage state of celery seedlings, as well as the malondialdehyde (MDA) content and relative conductivity (REC), increasing the oxidase activity, the osmotic regulatory substances, and chlorophyll, enhancing the leaf transpiration and the light energy utilization efficiency. We examined the mechanism of exogenous MT in mitigating high-temperature damage using the transcriptome sequencing method. A total of 134 genes were expressed differently at high temperature in the celery treated with MT compared with the untreated celery. Functional annotation analysis revealed that the differentially expressed genes were abundant in the "pyruvate metabolism" pathway and the "peroxidase activity" pathway. According to the pathway-based gene expression analysis, exogenous MT can inhibit the upregulation of pyruvate synthesis genes and the downregulation of pyruvate consumption genes, preventing the accumulated pyruvate from rapidly upregulating the expression of peroxidase genes, and thereby enhancing peroxidase activity. RT-qPCR verification showed a rising encoding peroxidase gene expression under MT treatment. The gene expression pattern involved in pyruvate anabolism and metabolism agreed with the abundant transcriptome expression, validating the physiological index results. These results indicate that the application of exogenous MT to celery significantly enhances the ability of plant to remove reactive oxygen species (ROS) in response to heat stress, thereby improving the ability of plant to resist heat stress. The results of this study provide a theoretical basis for the use of MT to alleviate the damage caused by heat stress in plant growth and development.
Assuntos
Apium , Melatonina , Termotolerância , Antioxidantes/farmacologia , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo , Melatonina/farmacologia , Oxirredutases/metabolismo , Peroxidases/metabolismo , Piruvatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Transcriptoma , Verduras/metabolismoRESUMO
High temperature stress is regarded as one of the significant abiotic stresses affecting the composition and distribution of natural habitats and the productivity of agriculturally significant plants worldwide. The HSF family is one of the most important transcription factors (TFs) families in plants and capable of responding rapidly to heat and other abiotic stresses. In this study, 29 AgHSFs were identified in celery and classified into three classes (A, B, and C) and 14 subgroups. The gene structures of AgHSFs in same subgroups were conserved, whereas in different classes were varied. AgHSF proteins were predicted to be involved in multiple biological processes by interacting with other proteins. Expression analysis revealed that AgHSF genes play a significant role in response to heat stress. Subsequently, AgHSFa6-1, which was significantly induced by high temperature, was selected for functional validation. AgHSFa6-1 was identified as a nuclear protein, and can upregulate the expression of certain downstream genes (HSP98.7, HSP70-1, BOB1, CPN60B, ADH2, APX1, GOLS1) in response to high-temperature treatment. Overexpression of AgHSFa6-1 in yeast and Arabidopsis displayed higher thermotolerance, both morphologically and physiologically. In response to heat stress, the transgenic plants produced considerably more proline, solute protein, antioxidant enzymes, and less MDA than wild-type (WT) plants. Overall, this study revealed that AgHSF family members perform a key role in response to high temperature, and AgHSFa6-1 acts as a positive regulator by augmenting the ROS-scavenging system to maintain membrane integrity, reducing stomatal apertures to control water loss, and upregulating the expression level of heat-stress sensitive genes to improve celery thermotolerance.
RESUMO
Terpenes are an important class of secondary metabolites in celery, which determine its flavor. Terpene synthase (TPS) has been established as a key enzyme in the biosynthesis of terpenes. This study systematically analyzed all members of the TPS gene family of celery (Apium graveolens) based on whole genome data. A total of 39 celery TPS genes were identified, among which TPS-a and TPS-b represented the two largest subfamilies. 77 cis-element types were screened in the promoter regions of AgTPS genes, suggesting the functional diversity of members of this family. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that AgTPS genes were enriched in multiple terpenoid biosynthesis pathways. Transcript abundance analysis and qRT-PCR showed that most AgTPS genes were differentially expressed in different tissues and colors of celery, with AgTPS 6, 9, and 11 expressed differentially in tissues, while AgTPS31, 32, and 38 are expressed differently in colors. More than 70% of the celery volatile compounds identified by HS-SPME-GC/MS were terpene, and the most critical compounds were ß-Myrcene, D-Limonene, ß-Ocimene and γ-Terpinene. Principal component analysis (PCA) showed that compounds (E)-ß-Ocimene, D-Limonene, ß-Myrcene and γ-Terpinene predominantly accounted for the variation. Further correlation analysis between gene expression and terpenoid accumulation showed that the four genes AgTPS9, 25, 31 and 38 genes may have positive regulatory effects on the synthesis of D-Limonene and ß-Myrcene in celery. Overall, this study identified key candidate genes that regulate the biosynthesis of volatile compounds and provide the foothold for the development and utilization of terpenoids in celery.