Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Mol Med ; 28(3): e18058, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38098246

RESUMO

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Assuntos
Astrágalo , Transdução de Sinais , Camundongos , Animais , Polissacarídeos/farmacologia , Intestinos , Células-Tronco
2.
Immunology ; 172(4): 614-626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38685744

RESUMO

Ionising radiation exposure can lead to acute haematopoietic radiation syndrome. Despite significant advancements in the field of radioprotection, no drugs with high efficacy and low toxicity have yet been approved by the Food and Drug Administration. FG-4592, as a proline hydroxylase inhibitor, may play an important role in radioprotection of the haematopoietic system. Mice were peritoneal injected with FG-4592 or normal saline. After irradiation, the survival time, body weight, peripheral blood cell and bone marrow cell (BMC) count, cell apoptosis, pathology were analysed and RNA-sequence technique (RNA-Seq) was conducted to explore the mechanism of FG-4592 in the haematopoietic system. Our results indicated that FG-4592 improved the survival rate and weight of irradiated mice and protected the spleen, thymus and bone marrow from IR-induced injury. The number of BMCs was increased and protected against IR-induced apoptosis. FG-4592 also promoted the recovery of the blood system and erythroid differentiation. The results of RNA-Seq and Western blot showed that the NF-κB signalling pathway and hypoxia-inducible factor-1 (HIF-1) signalling pathway were upregulated by FG-4592. Meanwhile, RT-PCR results showed that FG-4592 could promote inflammatory response significantly. FG-4592 exhibited radioprotective effects in the haematopoietic system by promoting inflammatory response and targeting the NF-κB, HIF signalling pathway.


Assuntos
Apoptose , Radiação Ionizante , Protetores contra Radiação , Animais , Camundongos , Protetores contra Radiação/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/metabolismo , Irradiação Corporal Total , Glicina/análogos & derivados , Isoquinolinas
3.
Genomics ; 115(2): 110585, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36801437

RESUMO

BACKGROUND: The incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored. METHODS: Wild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups. RESULTS: Roxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat. CONCLUSION: Roxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Modelos Animais de Doenças
4.
J Cell Mol Med ; 25(8): 3785-3792, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609010

RESUMO

Severe ionizing radiation causes the acute lethal damage of haematopoietic system and gastrointestinal tract. Here, we found CL429, the novel chimeric TLR2/NOD2 agonist, exhibited significant radioprotective effects in mice. CL429 increased mice survival, protected mice against the lethal damage of haematopoietic system and gastrointestinal tract. CL429 was more effective than equivalent amounts of monospecific (TLR2 or NOD2) and combination (TLR2 + NOD2) of molecules in preventing radiation-induced death. The radioprotection of CL429 was mainly mediated by activating TLR2 and partially activating NOD2. CL429-induced radioprotection was largely dependent on the activation of TLR2-MyD88-NF-κB signalling pathway. In conclusion, the data suggested that the co-activation of TLR2 and NOD2 could induce significant synergistic radioprotective effects and CL429 might be a potential high-efficiency selective agent.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/análogos & derivados , Síndrome Aguda da Radiação/prevenção & controle , Sistema Hematopoético/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/agonistas , Protetores contra Radiação/farmacologia , Receptor 2 Toll-Like/agonistas , Irradiação Corporal Total/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/patologia , Animais , Sistema Hematopoético/efeitos da radiação , Intestinos/lesões , Intestinos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Cell Mol Med ; 23(1): 349-356, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30334352

RESUMO

BACKGROUND: Ionizing radiation often causes severe injuries to radiosensitive tissues, especially haematopoietic system. Novel radioprotective drugs with low toxicity and high effectiveness are required. Prolyl hydroxylases domain (PHD) inhibitors have been reported to protect against radiation-induced gastrointestinal toxicity. In this study, we demonstrated the protective effects of a PHD inhibitor, roxadustat (FG-4592), against radiation-induced haematopoietic injuries in vitro and in vivo. METHODS: Tissue injuries were evaluated by Haematoxilin-Eosin (HE) staining assay. HSCs were determined by flow cytometry with the Lin- Sca-1+ c-Kit+ (LSK) phenotype. Cell apoptosis was determined by Annexin V/PI staining assay. Immunofluorescence was performed to measure radiation-induced DNA damage. A western blot assay was used to detect the changes of proteins related to apoptosis. RESULTS: We found that FG-4592 pretreatment increased survival rate of irradiated mice and protected bone marrow and spleen from damages. Number of bone marrow cells (BMCs) and LSK cells were also increased both in irradiated mice and recipients after bone marrow transplantation (BMT). FG-4592 also protected cells against radiation-induced apoptosis and double strand break of DNA. CONCLUSIONS: Our data showed that FG-4592 exhibited radioprotective properties in haematopoietic system both in vivo and in vitro through up-regulating HIF-1α, indicating a potential role of FG-4592 as a novel radioprotector.


Assuntos
Glicina/análogos & derivados , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Isoquinolinas/farmacologia , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Dano ao DNA , Glicina/farmacologia , Células-Tronco Hematopoéticas/efeitos da radiação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Baço/efeitos da radiação , Taxa de Sobrevida , Irradiação Corporal Total/mortalidade
6.
J Cell Mol Med ; 22(4): 2413-2421, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411511

RESUMO

It proved that Zymosan-A protected the haematopoietic system from radiation-induced damage via Toll-Like Receptor2 in our previous study. In this study, we investigated the potential mechanism for the radioprotective effects of Zymosan-A. The mice were treated with Zymosan-A (50 mg/kg, dissolved in NS) via peritoneal injection 24 and 2 hours before ionizing radiation. Apoptosis of bone marrow cells and the levels of IL-6, IL-12, G-CSF and GM-CSF were evaluated by flow cytometry assay. DNA damage was determined by γ-H2AX foci assay. In addition, RNA sequencing was performed to identify differentially expressed genes (DEGs). Zymosan-A protected bone marrow cells from radiation-induced apoptosis, up-regulated IL-6, IL-12, G-CSF and GM-CSF in bone marrow cells. Zymosan-A also protected cells from radiation-induced DNA damage. Moreover, RNA sequencing analysis revealed that Zymosan-A induced 131 DEGs involved in the regulation of immune system process and inflammatory response. The DEGs were mainly clustered in 18 KEGG pathways which were also associated with immune system processes. Zymosan-A protected bone marrow cells from radiation-induced apoptosis and up-regulated IL-6, IL-12, G-CSF and GM-CSF. Moreover, Zymosan-A might also exhibit radioprotective effects through regulating immune system process and inflammatory response. These results provided new knowledge regarding the radioprotective effect of Zymosan-A.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Zimosan/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células da Medula Óssea/efeitos da radiação , Citocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Interleucina-12/genética , Interleucina-6/genética , Masculino , Camundongos , Radiação Ionizante , Protetores contra Radiação/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
7.
Cell Physiol Biochem ; 43(2): 457-464, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922655

RESUMO

BACKGROUND/AIMS: The hematopoietic system is vulnerable to ionizing radiation and is often severely damaged by radiation. Molecules affecting radioresistance include Toll-like receptor 2. We investigated whether Zymosan-A, a novel TLR2 agonist, can protect the hematopoietic system from radiation-induced damage after total body irradiation. METHODS: Mice were exposed to total body radiation after treatment with Zymosan-A or normal saline, and their survival was recorded. Tissue damage was evaluated by hematoxylin-eosin staining. The number of nucleated cells in bone marrow was determined by flow cytometry. Cell viability and apoptosis assay were determined by CCK-8 assay and flow cytometry assay. Enzyme-linked immunosorbent assay was used to detect the level of cytokines. RESULTS: Zymosan-A protected mice from radiation-induced death and prevented radiation-induced hematopoietic system damage. Zymosan-A also promoted cell viability and inhibited cell apoptosis caused by radiation, induced radioprotective effects via TLR2, upregulated IL-6, IL-11, IL-12, and TNF-α in vivo. CONCLUSION: Zymosan-A can provide protection against radiation-induced hematopoietic system damage by targeting the TLR2 signaling pathway. Thus, Zymosan-A can be potentially effective radioprotectant.


Assuntos
Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Protetores contra Radiação/farmacologia , Receptor 2 Toll-Like/metabolismo , Zimosan/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Sistema Hematopoético/patologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
8.
Cell Physiol Biochem ; 44(4): 1295-1310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29183009

RESUMO

BACKGROUND/AIMS: Radiation therapy is an important treatment for thoracic cancer; however, side effects accompanied with radiotherapy lead to limited tumor control and a decline in patient quality of life. Among these side effects, radiation-induced lung injury (RILI) is the most serious and common. Hence, an effective remedy for RILI is needed. Mesenchymal stromal cells (MSCs) are multipotent adult stem cells that have been demonstrated to be an effective treatment in some disease caused by tissue damage. However, unlike other injuries, RILI received limited therapeutic effects from implanted MSCs due to local hypoxia and extensive reactive oxygen species (ROS) in irradiated lungs. Since the poor survival of MSCs is primarily due to hypoxia and ROS generation, we hypothesize that persistent and adaptive hypoxia treatment induces enhanced resistance to hypoxic stress in implanted MSC. The aim of this study is to investigate whether persistent and adaptive hypoxia treatment of bmMSCs prior to their transplantation in injured mice enhanced survival and improved curative effects in RILI. METHODS: Primary bmMSCs were obtained from the marrow of six-week-old male C57BL6/J mice and were cultured either under normoxic conditions (21% O2) or hypoxic conditions (2.5% O2). Mice were injected with normoxia/hypoxia MSCs after thoracic irradiation (20 Gy). The therapeutic effects of MSCs on RILI were assessed by pathological examinations that included H&E staining, Masson staining and α-SMA staining; meanwhile, inflammatory factors were measured using an ELISA. The morphology of MSCs in vitro was recorded using a microscope and identified by flow cytometry, cell viability was measured using the CCK-8 assay, the potential for proliferation was detected by the EdU assay, and ROS levels were measured using a ROS fluorogenic probe. In addition, HIF-1α and several survival pathway proteins (Akt, p-Akt, Caspase-3) were also detected by western blotting. RESULTS: Implanted MSCs alleviated both early radiation-induced pneumonia and late pulmonary fibrosis. However, hypoxia MSCs displayed a more pronounced therapeutic effect compared to normoxia MSCs. Compared to normoxia MSCs, the hypoxia MSCs demonstrated greater cell viability, an enhanced proliferation potential, decreased ROS levels and increased resistance to hypoxia and ROS stress. In addition, hypoxia MSCs achieved higher activation levels of HIF-1α and Akt, and HIF-1α played a critical role in the development of resistance. CONCLUSION: Hypoxia enhances the therapeutic effect of mesenchymal stromal cells on radiation-induced lung injury by promoting MSC proliferation and improving their antioxidant ability, mediated by HIF-1α.


Assuntos
Antioxidantes/metabolismo , Hipóxia Celular , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Actinas/genética , Actinas/metabolismo , Animais , Apoptose/efeitos da radiação , Células da Medula Óssea/citologia , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Raios gama , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lesão Pulmonar/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tecido Parenquimatoso/citologia , Tecido Parenquimatoso/metabolismo , Tecido Parenquimatoso/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/análise , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo
9.
Cell Physiol Biochem ; 42(3): 1120-1126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662506

RESUMO

BACKGROUND/AIMS: Polymyxin B (PMB) is a cyclic cationic polypeptide antibiotic widely used to counteract the effects of endotoxin contamination, both in vitro and in vivo. Lipopolysaccharide (LPS) is an endotoxin that acts as a radiation protection factor. In this study, we focus on the role of PMB in LPS-induced and radiation-induced mortality in mice. METHODS: Mice received total-body radiation or were pretreated by LPS or PMB, and the survival of mice was recorded. Elisa were used to detect the cytokines levels. RESULTS: PMB decreased LPS-induced, but increased radiation-induced mortality in mice. Moreover, PMB could block the LPS-induced radioprotective effect. The ELISA and gene knock-out experiments indicated that PMB reduces TNF-α level to block LPS-induced mortality in mice, and inhibits IL-6, G-CSF and IL-10 to increase radiation-induced mortality via the TLR4-Myd88-IL-6 pathway. CONCLUSIONS: Our study revealed a role of PMB in LPS-induced endotoxemia and radiation exposure. We infer that the TLR4-Myd88-IL-6 pathway may play a crucial role in the process.


Assuntos
Antibacterianos/farmacologia , Interleucina-6/imunologia , Lipopolissacarídeos/efeitos adversos , Fator 88 de Diferenciação Mieloide/imunologia , Polimixina B/farmacologia , Lesões por Radiação/complicações , Receptor 4 Toll-Like/imunologia , Animais , Fator Estimulador de Colônias de Granulócitos , Lipopolissacarídeos/imunologia , Camundongos , Lesões por Radiação/mortalidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
10.
Cell Physiol Biochem ; 40(3-4): 716-726, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898411

RESUMO

BACKGROUND: Exposure to ionizing radiation (IR) often causes severe damage to radiosensitive tissues, which limits the use of radiotherapy in cancer patients. Novel safe and effective radioprotectant is urgently required. It has been reported toll like receptor 2 (TLR2) plays a critical role in radioresistance. In this study, we demonstrated the protective effects of Heat-Killed Mycobacterium tuberculosis (HKMT), a potent TLR2 agonist, against IR. METHODS: Cell survival and apoptosis were determined by CCK-8 assay and Annexin V assay, respectively. An immunofluorescence staining assay was used to detect the translocation of nuclear faktor-kappa beta (NF-kB) p65. Tissue damage was evaluated by Haematoxilin-Eosin (HE) staining assay. We also used a flow cytometry assay to measure the number of nucleated cells and CD34+ hemopoietic stem cells in bone marrow. A western blot assay was used to detect the changes of proteins involving TLR signaling pathway. RESULTS: We found that HKMT increased cell viability and inhibited cell apoptosis after irradiation. HKMT induced NF-kB translocation and activated Erk1/2, p38 signaling pathway. HKMT also protected bone marrow and testis from destruction. Radiation-induced decreases of nucleated cells and CD34+ hemopoietic stem cells in bone marrow were also inhibited by HKMT treatment. We found that radiation caused increase of inflammatory cytokines was also suppressed by HKMT. CONCLUSION: Our data showed that HKMT exhibited radioprotective effects in vivo and in vitro through activating NF-kB and MAPK signaling pathway, suggesting a potential of HKMT as novel radioprotector.


Assuntos
Temperatura Alta , Mycobacterium tuberculosis/fisiologia , Tolerância a Radiação/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Animais , Antígenos CD34/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Citocinas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Lesões por Radiação/patologia , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/efeitos da radiação , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/efeitos da radiação , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/efeitos da radiação
11.
Int Immunopharmacol ; 138: 112614, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972212

RESUMO

Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.

12.
Int Immunopharmacol ; 129: 111614, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350358

RESUMO

BACKGROUND: Intestinal tissue is extremely sensitive to ionizing radiation (IR), which is easy to cause intestinal radiation sickness, and the mortality rate is very high after exposure. Recent studies have found that intestinal immune cells and intestinal stem cells (ISCs) may play a key role in IR-induced intestinal injury. METHODS: C57BL6 mice matched for age, sex and weight were randomly grouped and intraperitoneal injected with PBS, Scleroglucan (125.0 mg/kg) or Anti-mouse IL-17A -InVivo (10 mg/kg), the number of mice in each group was n ≥ 3.Survival time, body weight, pathology, organoids and immune cell markers of the mice after IR (10.0 Gy) were compared, and the mechanism of action in intestinal tissues was verified by transcriptome sequencing. RESULTS: Scleroglucan has significant radiation protective effects on the intestine, including improving the survival rate of irradiated mice, inhibiting the radiation damage of intestinal tissue, and promoting the proliferation and differentiation of intestinal stem cells (ISCs). The results of RNA sequencing suggested that Scleroglucan could significantly activate the immune system and up-regulate the IL-17 and NF-κB signaling pathways. Flow cytometry showed that Scleroglucan could significantly up-regulate the number of Th17 cells and the level of IL-17A in the gut. IL-17A provides radiation protection. After intraperitoneal injection of Scleroglucan and Anti-mouse IL-17A -InVivo, mice can significantly reverse the radiation protection effect of Scleroglucan, down-regulate the molecular markers of intestinal stem cells and the associated markers of DC, Th1 and Th17 cells, and up-regulate the associated markers of Treg and Macrophage cells. CONCLUSION: Scleroglucan may promote the proliferation and regeneration of ISCs by regulating the activation of intestinal immune function mediated by IL-17 signaling pathway and play a protective role in IR-induced injury.


Assuntos
Glucanos , Lesões por Radiação , Protetores contra Radiação , Camundongos , Animais , Interleucina-17 , Camundongos Endogâmicos C57BL , Lesões por Radiação/prevenção & controle , Transdução de Sinais , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Intestinos/patologia
13.
Stem Cell Res Ther ; 13(1): 271, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729656

RESUMO

BACKGROUND: Severe ionizing radiation (IR)-induced intestinal injury associates with high mortality, which is a worldwide problem requiring urgent attention. In recent years, studies have found that the PHD-HIF signaling pathway may play key roles in IR-induced intestinal injury, and we found that FG-4592, the PHD inhibitor, has significant radioprotective effects on IR-induced intestinal injury. METHODS: In the presence or absence of FG-4592 treatment, the survival time, pathology, cell viability, cell apoptosis, and organoids of mice after irradiation were compared, and the mechanism was verified after transcriptome sequencing. The data were analyzed using SPSS ver. 19 software. RESULTS: Our results show that FG-4592 had significant radioprotective effects on the intestine. FG-4592 improved the survival of irradiated mice, inhibited the radiation damage of intestinal tissue, promoted the regeneration of intestinal crypts after IR and reduced the apoptosis of intestinal crypt cells. Through organoid experiments, it is found that FG-4592 promoted the proliferation and differentiation of intestinal stem cells (ISCs). Moreover, the results of RNA sequencing and Western blot showed that FG-4592 significantly upregulated the TLR4 signaling pathway, and FG-4592 had no radioprotection on TLR4 KO mice, suggesting that FG-4592 may play protective role against IR by targeting TLR4. CONCLUSION: Our work proves that FG-4592 may promote the proliferation and regeneration of ISCs through the targeted regulation of the TLR4 signaling pathway and ultimately play radioprotective roles in IR-induced injury. These results enrich the molecular mechanism of FG-4592 in protecting cells from IR-induced injury and provide new methods for the radioprotection of intestine.


Assuntos
Lesões por Radiação , Protetores contra Radiação , Animais , Apoptose , Glicina/análogos & derivados , Mucosa Intestinal/metabolismo , Intestinos , Isoquinolinas , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/patologia , Protetores contra Radiação/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
14.
Cell Death Dis ; 13(10): 884, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266266

RESUMO

Intestinal stem cells (ISCs) are responsible for intestinal tissue homeostasis and are important for the regeneration of the damaged intestinal epithelia. Through the establishment of ionizing radiation (IR) induced intestinal injury model, we found that a TLR2 agonist, Zymosan-A, promoted the regeneration of ISCs in vivo and in vitro. Zymosan-A improved the survival of abdominal irradiated mice (81.82% of mice in the treated group vs. 30% of mice in the PBS group), inhibited the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts and the number of ISCs after lethal IR in vivo. Through organoid experiments, we found that Zymosan-A promoted the proliferation and differentiation of ISCs after IR. Remarkably, the results of RNA sequencing and Western Blot (WB) showed that Zymosan-A reduced IR-induced intestinal injury via TLR2 signaling pathway and Wnt signaling pathway and Zymosan-A had no radioprotection on TLR2 KO mice, suggesting that Zymosan-A may play a radioprotective role by targeting TLR2. Moreover, our results revealed that Zymosan-A increased ASCL2, a transcription factor of ISCs, playing a core role in the process of Zymosan-A against IR-induced intestinal injury and likely contributing to the survival of intestinal organoids post-radiation. In conclusion, we demonstrated that Zymosan-A promotes the regeneration of ISCs by upregulating ASCL2.


Assuntos
Células-Tronco , Receptor 2 Toll-Like , Animais , Camundongos , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Zimosan/farmacologia
15.
Dose Response ; 20(3): 15593258221123679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132708

RESUMO

Accidental radiation exposure is a threat to human health that necessitates effective clinical diagnosis. Suitable biomarkers are urgently needed for early assessment of exposure dose. Existing technologies being used to assess the extent of radiation have notable limitations. As a radiation biomarker, miRNA has the advantages of simple detection and high throughput. In this study, we screened for miRNAs with dose and time dependent responses in peripheral blood leukocytes via miRNA sequencing in establishing the animal model of acute radiation injury. Four radiation-sensitive and stably expressed miRNAs were selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the 48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p, mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression and irradiation dose were plotted. Then, the results were validated by RT-qPCR in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed good correlation at both 24 h and 48 h after irradiation. In a conclusion, the miRNAs that are sensitive to ionizing radiation with dose dependent effects were selected out, which have the potential of forming a rapid assessment scheme for acute radiation injury.

16.
Toxicol Lett ; 357: 1-10, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929306

RESUMO

Damage of Intestinal Stem Cells (ISCs) is the main cause of radiation induced-intestinal injury (RIII). Recently, hypoxia Inducible factor (HIF) was verified to be critical for promoting proliferation of ISCs, which suggested a protective role of HIF in the RIII. Thus, we investigated the effect of FG-4592, a novel up-regulator of HIF, on the protection of RIII. With/without FG-4592 treatment, the abdomen of mice was radiated, and intestinal injury was assessed. Especially, by intestinal organoid culture, the multiplication capacity and differentiation features of ISCs were detected. As a result, FG-4592, a novel up-regulator of HIF could remit RIII and promote regeneration and differentiation of ISCs after radiation, which were depended on HIF-2 rather than HIF-1.


Assuntos
Glicina/análogos & derivados , Fator 1 Induzível por Hipóxia/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Isoquinolinas/farmacologia , Lesões por Radiação/tratamento farmacológico , Células-Tronco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glicina/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
17.
Front Immunol ; 13: 927213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110845

RESUMO

Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.


Assuntos
Células-Tronco Hematopoéticas , Compostos Organofosforados , Lesões Experimentais por Radiação , Receptor 4 Toll-Like , Animais , Apoptose , Diferenciação Celular , Glucosamina/análogos & derivados , Glucosamina/farmacologia , Células-Tronco Hematopoéticas/citologia , Mucosa Intestinal , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Compostos Organofosforados/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Receptor 4 Toll-Like/genética
18.
Toxicol Lett ; 334: 4-13, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949624

RESUMO

Radon exposure is the most frequent cause of lung cancer in non-smokers. The high linear energy transfer alpha-particles from radon decay cause the accumulation of multiple genetic changes and lead to cancer development. Epithelial-mesenchymal transition (EMT) plays an important role in oncogenesis. However, the mechanisms underlying chronic radon exposure-induced EMT attributed to carcinogenesis are not understood. This study aimed to explore the EMT and potential molecular mechanisms induced by repeated radon exposure. The EMT model of 16HBE and BEAS-2B cells was established with radon exposure (20000 Bq/m3, 20 min each time every 3 days). We found repeated radon exposure facilitated epithelial cell migration, proliferation, reduced cell adhesion and ability to undergo EMT through a decrease in epithelial markers and an increase in mesenchymal markers. Radon regulated the expression of matrix metalloproteinase 2 (MMP2) and tissue inhibitors of metalloproteinase 2 (TIMP2) to disrupt the balance of MMP2/TIMP2. In vivo, BALB/c mice were exposed to 105 Bq/m3 radon gas for cumulative doses of 60 and 120 Working Level Months (WLM). Radon inhalation caused lung damage and fibrosis in mice, which was aggravated with the increase of exposure dose. EMT-like transformation also occurred in lung tissues of radon-exposure mice. Moreover, radon radiation increased p-PI3K, p-AKT and p-mTOR in cells and mice. Radon reduced the GSK-3ß level and elevated the active ß-catenin in 16HBE cells. The m-TOR and AKT inhibitors attenuated radon exposure-induced EMT by regulation related biomarkers. These data demonstrated that radon exposure induced EMT through the PI3K/AKT/mTOR pathway in epithelial cells and lung tissue.


Assuntos
Poluentes Radioativos do Ar/toxicidade , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Pulmão , Radônio/toxicidade , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Produtos de Decaimento de Radônio/toxicidade , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Front Oncol ; 10: 574001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33692937

RESUMO

Ionizing radiation is one of the common environmental carcinogens. miRNAs play critical roles in the processes of tumor occurrence, development, metastasis. However, the relationship between radiation-induced carcinogenesis and miRNA rarely reported. This study is aimed to investigate the effect of miRNAs on radiation-induced carcinogenesis. In this study we established the radiation-induced thymic lymphoma mice model. By using miRNA array of RTL tissue and predicting for miRNAs target genes, a miRNA-mRNA crosstalk network was established. Based on this network, we identified a critical miRNA, miR-486, which was the most down-regulated in the radiation-induced carcinogenesis. Then the function of miR-486 was confirmed by using knockout mice and cellular experiments. As a result, miR-486 could inhibit proliferation of mouse lymphoma cells by targeting IGF2BP3 mRNA. The adenovirus over-expression miR-486 vector reduced tumorigenesis in vivo. MiR-486 knockout mice have a strong tendency of radiation-induced carcinogenesis. In conclusion, miR-486 inhibits the proliferation of lymphoma cells and tumorigenesis induced by radiation through targeting IGF2BP3.

20.
Radiat Res ; 193(2): 171-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877256

RESUMO

Radiation-induced lung injury (RILI) is a common and severe side effect of thoracic radiotherapy, which compromises patients' quality of life. Recent studies revealed that early vascular injury, especially microvascular damage, played a central role in the development of RILI. For this reason, early vascular protection is essential for RILI therapy. The ATP-sensitive K+ (KATP) channel is an ATP-dependent K+ channel with multiple subunits. The protective role of the KATP channel in vascular injury has been demonstrated in some published studies. In this work, we investigated the effect of KATP channel on RILI. Our findings confirmed that the KATP channel blocker glibenclamide, rather than the KATP channel opener pinacidil, remitted RILI, and in particular, provided protection against radiation-induced vascular injury. Cytology experiments verified that glibenclamide enhanced cell viability, increased the potential of proliferation after irradiation and attenuated radiation-induced apoptosis. Involved mechanisms included increased Ca2+ influx and PKC activation, which were induced by glibenclamide pretreatment. In conclusion, the KATP channel blocker glibenclamide remitted RILI and inhibited the radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Glibureto/farmacologia , Canais KATP/antagonistas & inibidores , Lesão Pulmonar/prevenção & controle , Proteína Quinase C/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Animais , Apoptose/efeitos da radiação , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Bloqueadores dos Canais de Potássio/farmacologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Pneumonite por Radiação/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA