Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39337417

RESUMO

Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects.


Assuntos
Antivirais , Apoptose , Flavonoides , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antivirais/farmacologia , Gatos , Simulação de Acoplamento Molecular , Linhagem Celular
2.
J Virol ; 90(2): 682-93, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491168

RESUMO

UNLABELLED: Porcine reproductive and respiratory syndrome virus (PRRSV) is a critical pathogen of swine, and infections by this virus often result in delayed, low-level induction of cytotoxic T lymphocyte (CTL) responses in pigs. Here, we report that a Chinese highly pathogenic PRRSV strain possessed the ability to downregulate swine leukocyte antigen class I (SLA-I) molecules on the cell surface of porcine alveolar macrophages and target them for degradation in a manner that was dependent on the ubiquitin-proteasome system. Moreover, we found that the nsp1α replicase protein contributed to this property of PRRSV. Further mutagenesis analyses revealed that this function of nsp1α required the intact molecule, including the zinc finger domain, but not the cysteine protease activity. More importantly, we found that nsp1α was able to interact with both chains of SLA-I, a requirement that is commonly needed for many viral proteins to target their cellular substrates for proteasomal degradation. Together, our findings provide critical insights into the mechanisms of how PRRSV might evade cellular immunity and also add a new role for nsp1α in PRRSV infection. IMPORTANCE: PRRSV infections often result in delayed, low-level induction of CTL responses in pigs. Deregulation of this immunity is thought to prevent the virus from clearance in an efficient and timely manner, contributing to persistent infections in swineherds. Our studies in this report provide critical insight into the mechanism of how PRRSV might evade CTL responses. In addition, our findings add a new role for nsp1α, a critical viral factor involved in antagonizing host innate immunity.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Análise Mutacional de DNA , Macrófagos/imunologia , Macrófagos/virologia , Proteólise , Suínos , Proteínas não Estruturais Virais/genética
3.
Front Vet Sci ; 11: 1337690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39051010

RESUMO

Introduction: Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), canine coronavirus (CCoV), and feline infectious peritonitis virus (FIPV), have the potential for interspecies transmission. These viruses can be present in complex environments where humans, dogs, and cats coexist, posing a significant threat to both human and animal safety. Methods and results: In this study, we developed a novel multiplex TaqMan-probe-based real-time PCR assay for the simultaneous detection and differentiation of SARS-CoV-2, CCoV, and FIPV. Specific primers and TaqMan fluorescent probes were designed based on the N region of SARS-CoV-2 and FIPV, as well as the S region of CCoV, which demonstrated a remarkable sensitivity and specificity toward the targeted viruses, as few as 21.83, 17.25 and 9.25 copies/µL for SARS-CoV-2, CCoV and FIPV, respectively. The standard curve constructed by the optimized method in our present study showed a high amplification efficiency within or near the optimal range of 91% to 116% and R(2) values were at least 0.95 for the abovementioned coronaviruses. A total of 91 samples, including six plasmid mixed mock samples, four virus fluid mixing simulated samples, and 81 clinical samples, were analyzed using this method. Results demonstrated strong agreement with conventional approaches. Discussion: By enabling the simultaneous detection of three viruses, this method enhances testing efficiency while decreasing costs. Importantly, it provides a valuable tool for the prevalence and geographical distribution of suspected and co-infected animals, ultimately contributing to the advancement of both animal and public health.

4.
Front Cell Infect Microbiol ; 14: 1427588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318476

RESUMO

P32 protein serves as a crucial structural component of Goat pox virus (GTPV), which causes a highly virulent infectious disease in sheep and goats. Despite the fact that P32 has been widely expressed in the previous studies, it is difficult to obtain recombinant P32 efficiently. This study aimed to achieve soluble expression of P32 recombinant protein and to develop its specific monoclonal antibody. The gene fragment of P32Δ (GP32Δ) was synthesized by optimizing the coding sequence of amino acids 1-246 of the known goatpox P32 protein. Subsequently, GP32Δ was cloned into a prokaryotic expression vector for expression and purification, resulting in the successful production of soluble recombinant protein rP32Δ. Utilizing rP32Δ, an indirect ELISA method was established by immunizing 6-week-old BALB/c mice with inactivated GTPV as the antigen. Through hybridoma technology, three monoclonal antibody hybridoma cell lines secreting anti-goat pox virus rP32Δ were screened, designated as 2F3, 3E8, and 4H5, respectively. These monoclonal antibodies, classified as IgG1, IgG2a, and IgG2b, respectively, with κappa light chains, were characterized following ascites preparation and purification. Indirect ELISA results demonstrated that the ELISA potency of the three monoclonal antibodies exceeded 1:12800. Furthermore, Western blot analysis revealed specific reactivity of both 3E8 and 4H5 with rP32Δ, while immunofluorescence assays confirmed 3E8's ability to specifically recognize GTPV in cells. The preceding findings demonstrate the successful acquisition of the soluble expressed recombinant P32 protein and its specific monoclonal antibody 3E8 in this study, thereby laying a foundational material basis for the establishment of a GTPV detection method.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Capripoxvirus , Ensaio de Imunoadsorção Enzimática , Cabras , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Animais , Anticorpos Monoclonais/imunologia , Capripoxvirus/genética , Capripoxvirus/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Hibridomas , Imunoglobulina G , Expressão Gênica , Proteínas Virais/genética , Proteínas Virais/imunologia , Infecções por Poxviridae/imunologia , Feminino , Doenças das Cabras/virologia , Clonagem Molecular
5.
Vaccine ; 41(6): 1232-1238, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635138

RESUMO

Clostridium perfringens epsilon toxin (ETX) and Clostridium septicum alpha toxin (CSA) are lethal and necrotizing toxins, which play key roles in enterotoxemia and braxy of ruminants, respectively. In the present study, we synthesized a bivalent chimeric protein rETXm3CSAm4/TMD comprising ETXm3 (Y30A/H106P/Y196A) and CSAm4/TMD (C86L/N296A/H301A/W342A and a deletion of residues 212 to 222). Compared with recombinant ETX and recombinant CSA, rETXm3CSAm4/TMD showed no cytotoxicity in Madin-Darby Canine Kidney cells and was not fatal to mice. Moreover, rETXm3CSAm4/TMD could protect immunized mice against 10 × mouse LD100 of crude ETX or 3 × mouse LD100 of crude CSA without obvious histopathologic difference. Most importantly, both rabbits and sheep immunized with rETXm3CSAm4/TMD produced high titers of neutralizing antibody which protected the animals against the challenge with crude ETX or crude CSA. These data suggest that genetically detoxified rETXm3CSAm4/TMD is a potential subunit vaccine candidate against enterotoxemia and braxy.


Assuntos
Infecções por Clostridium , Enterotoxemia , Animais , Cães , Coelhos , Ovinos , Camundongos , Enterotoxemia/prevenção & controle , Enterotoxemia/patologia , Proteínas Recombinantes de Fusão/genética , Clostridium perfringens , Infecções por Clostridium/prevenção & controle , Vacinas Bacterianas
6.
Vaccine ; 41(32): 4762-4770, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37357076

RESUMO

Epsilon toxin (ETX) is secreted by Clostridium perfringens (C. perfringens)as a relatively inactive prototoxin (pETX), which is enzymatically activated to ETX by removing carboxy-terminal and amino-terminal peptides. Genetically engineered ETX mutants have been shown to function as potential vaccine candidates in the prevention of the enterotoxemia caused by C. perfringens. In the present study, two recombinant site-directed mutants of pETX, rpETXY30A/Y71A/H106P/Y196A (rpETXm41) and rpETXY30A/H106P/Y196A/F199E (rpETXm42), were synthesized by mutating four essential amino acid residues (Tyr30, Tyr71, His106, Tyr196 or Phe199). Compared to recombinant pETX (rpETX), both rpETXm41 and rpETXm42 lacked the detectable toxicity in MDCK cells and mice, which suggested that both rpETXm41 and rpETXm42 are sufficiently safe to be vaccine candidates. Despite the fact that rpETXm41 and rpETXm42 were reactogenic with polyclonal antibodies against crude ETX, both single- and double-dose vaccination (Vs and Vd, respectively) of rpETXm41 induced a higher level of IgG titer and protection in mice than that of rpETXm42. Therefore, we selected rpETXm41 for the further study. Sheep received Vs of 150 µg rpETXm41 developed significant levels of toxin-neutralizing antibodies persisting for at least 6 months, which conferred protection against crude ETX challenge without microscopic lesions. These data suggest that genetically detoxified rpETXY30A/Y71A/H106P/Y196A could form the basis of a next-generation enterotoxemia vaccine.


Assuntos
Enterotoxemia , Vacinas , Cães , Animais , Camundongos , Ovinos , Enterotoxemia/prevenção & controle , Enterotoxemia/patologia , Clostridium perfringens/genética , Células Madin Darby de Rim Canino , Peptídeos
7.
Vaccines (Basel) ; 11(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243014

RESUMO

Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.

8.
Toxicon ; 233: 107234, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37543293

RESUMO

Clostridium septicum alpha toxin (CSA) plays significant roles in ruminant's braxy. Genetically engineered CSA has been shown to function as a potential vaccine candidate in the prevention of the disease caused by Clostridium septicum. In the present study, we synthesized a non-toxic recombinant, rCSAm4/TMD by introducing four amino acid substitutions (C86L/N296A/H301A/W342A) and 11-amino-acid deletion (residues 212 to 222). Compared to recombinant CSA, rCSAm4/TMD showed no cytotoxicity to MDCK cells and was not fatal to mice. Moreover, rCSAm4/TMD could protect immunized mice against 5 × mouse LD100 (100% lethal dose) of crude CSA without obvious pathological change. Most importantly, rabbits immunized with rCSAm4/TMD produced high titers of neutralizing antibodies which protected the rabbits against crude CSA challenge. These data suggest that genetically detoxified rCSAm4/TMD is a potential subunit vaccine candidate against braxy.


Assuntos
Infecções por Clostridium , Clostridium septicum , Coelhos , Animais , Camundongos , Infecções por Clostridium/prevenção & controle , Anticorpos Neutralizantes , Vacinas Bacterianas
9.
Front Immunol ; 13: 961287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119021

RESUMO

Contagious ecthyma is a highly contagious viral disease with zoonotic significance caused by orf virus (ORFV) that affects domestic, ruminants and humans. Live attenuated virus and attenuated tissue culture vaccines are widely used in the fight against ORFV, however, the conventional attenuated vaccine strains have many drawbacks. The aim of this project was to construct a promising contagious ecthyma vaccine strain with safety, high protection efficacy and accessibility by genetic manipulation to against the disease. Using a natural ORFV-GS14 strain as the parental virus, recombinant virus, rGS14-ΔCBP-ΔGIF, with double deletions in the genes encoding the chemokine binding protein (CBP) and granulocyte/macrophage colony-stimulating factor inhibitory factor (GIF) was generated and characterized in vitro and in vivo. Results showed that the growth kinetics curve of rGS14-ΔCBP-ΔGIF and parental virus was consistent, both reaching plateau phase at 48 h post infection, which indicated that the double deletion of cbp and gif genes had little impact on the replication properties of the recombinant virus in primary goat testis (PGT) cell cultures compared with the parental virus. The safety of the double gene-deleted virus was evaluated in lambs. The lambs were monitored for 21 days post infection of the recombinant virus and no ORFV associated symptoms were observed in 21 days post-infection except for slight fever and anorexia in 5 days post-infection, and all lambs inoculated with either recombinant virus or PBS exhibited no clinical signs. To assess the protection efficacy of the rGS14-ΔCBP-ΔGIF, groups of four lambs each were inoculated with rGS14-ΔCBP-ΔGIF, rGS14-ΔCBP, rGS14-ΔGIF or PBS and challenged by a wild type virulent ORFV strain that was isolated from proliferative scabby lesions tissues of infected goat at 21-day post-inoculation. During 14 days post-challenging, lambs inoculated with rGS14-ΔCBP-ΔGIF all remained healthy with unimmunized group all infected, while the single gene-deleted viruses only protected 40% to 50% animals. These results indicated that the double gene-deleted recombinant virus could provide complete protection against virulent ORFV challenging. In conclusion, the double gene-deleted recombinant virus strain, rGS14-ΔCBP-ΔGIF, would be a promising candidate vaccine strains with safety, high protection efficacy and availability.


Assuntos
Ectima Contagioso , Vírus do Orf , Animais , Ectima Contagioso/genética , Ectima Contagioso/patologia , Deleção de Genes , Cabras , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Vírus do Orf/genética , Ovinos , Carneiro Doméstico , Vacinas Atenuadas
10.
Front Microbiol ; 12: 743980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087481

RESUMO

Mycoplasma capricolum subsp. capripneumoniae (Mccp) is the cause of contagious caprine pleuropneumonia (CCPP), which is a highly significant respiratory disease in goats leading to significant economic losses in Africa and Asia. Currently available procedures for the diagnosis of CCPP have some limitations in sensitivity, specificity, operation time, requirement of sophisticated equipment or skilled personnel, and cost. In this study, we developed a rapid, sensitive, and specific colloidal gold-based immunochromatographic assay (GICA) strip for the efficient on-site detection of antibodies against Mccp in the serum within 10 min. For the preparation of this colloidal GICA strip, recombinant P20 protein, the membrane protein of Mccp, was expressed by Escherichia coli prokaryotic expression system after purification was used as the binding antigen in the test. The rabbit anti-goat immunoglobulin G labeled with the colloidal gold was used as the detection probe, whereas the goat anti-rabbit immunoglobulin G was coated on the nitrocellulose membrane as the control line. The concentration of the coating antibody was optimized, and the effectiveness of this colloidal GICA strip was evaluated. Our results proved that the detection limit of the test strip was up to 1:64 dilutions for the Mccp antibody-positive serum samples with no cross-reactivity with other pathogens commonly infecting small ruminants,including goat pox virus, peste des petits ruminants virus, foot-and-mouth disease virus type A, or other mycoplasmas. Moreover, the colloidal GICA strip was more sensitive and specific than the indirect hemagglutination assay for the detection of Mccp antibodies. The 106 clinical serum samples were detected by the colloidal GICA strip compared with the complement fixation test, demonstrating an 87.74% concordance with the complement fixation test. This novel colloidal GICA strip would be an effective tool for the cost-effective and rapid diagnosis of CCPP in the field.

11.
Parasitol Int ; 67(6): 679-683, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29959093

RESUMO

Theileriosis and ehrlichiosis are two important tick-borne diseases affecting cattle farming in China. However, limited information is available regarding prevalence and molecular characterization of Theileria annulata and Ehrlichia ruminantium in cattle in Xinjiang Uygur Autonomous Region (XUAR), northwestern China. In this study, a total of 176 blood samples of cattle from three rural areas of XUAR were collected in June 2017 and were tested by nested-PCR. A total of 34 (19.3%) samples were found to be infected with one or two pathogens. The overall prevalence rates of T. annulata and E. ruminantium were 18.2% and 1.7%, respectively. Phylogenetic analyses revealed that the E. ruminantium isolates from XUAR were located in the same clade but diverged from the isolates from African countries using pCS20 gene while T. annulata isolates from XUAR revealed differences in the genotypes using Tams1 sequences. To our knowledge, this is the first report of E. ruminantium infection in cattle in China. It also provides the first genetic characterization of T. annulata in cattle in XUAR. The current findings are important for understanding the distribution of agents of theileriosis and ehrlichiosis and in designing measures for the prevention and control of tick-borne diseases in cattle, other animals, and humans.


Assuntos
Doenças dos Bovinos/epidemiologia , Ehrlichia ruminantium/isolamento & purificação , Ehrlichiose/veterinária , Theileria annulata/isolamento & purificação , Theileriose/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , China/epidemiologia , Ehrlichia ruminantium/genética , Ehrlichiose/epidemiologia , Ehrlichiose/microbiologia , Feminino , Genes Bacterianos , Genes de Protozoários , Masculino , Filogenia , Prevalência , Análise de Sequência de DNA/veterinária , Theileria annulata/genética , Theileriose/parasitologia
12.
Vet Microbiol ; 178(3-4): 217-29, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26043943

RESUMO

Japanese encephalitis virus (JEV) is an important zoonotic pathogen causing viral encephalitis in human and reproductive failure in pigs. In the present study, we first examined the autophagy induced by JEV infection in host cells, and then analyzed the JEV proteins involving in autophagy induction, and further investigated the relationship between viral protein and immunity-related GTPases M (IRGM). Our results showed that JEV infection could induce autophagy in host cells and autophagy promoted the replication of JEV in vitro; the cells transfected with individual plasmid that was expressing C, M and NS3 had a significantly higher conversion of LC3-I/II, and enhanced LC3 signals with the fluorescence punctuates accumulation which was completely co-localized with LC3 and increased number of autophagosomes-like vesicles, suggesting that C, M and NS3 are the major viral proteins involving in autophagy induction upon JEV infection; the virus titer in the cells treated by the siRNA specific for IRGM had a significant decrease, and the NS3 signals in the cells transfected with the plasmid that was expressing NS3 were completely co-localized with the IRGM signals, suggesting that the NS3 of JEV could target IRGM which may play a role in the replication of JEV. Our findings help to understand the role of autophagy in JEV and other flaviviruses infections.


Assuntos
Autofagia , Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Doenças dos Suínos/virologia , Proteínas não Estruturais Virais/metabolismo , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Humanos , Membranas/metabolismo , Suínos , Proteínas não Estruturais Virais/genética
13.
Virus Res ; 189: 226-34, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24911239

RESUMO

Type I interferons (IFNs), predominantly IFN-α and ß, play important roles in both innate and adaptive immune responses against viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to be able to down-regulate the IFN response during in vivo and in vitro infection. In this study, we first analyzed inhibitory effect of each NSP of low pathogenic PRRSV HB-1/3.9 on IFN-ß transcription in MARC-145 cells, and the results showed that the IFN-ß promoter activation could be suppressed by NSP1α, NSP2, NSP1ß, NSP3, NSP4, NSP5 and NSP11. We next confirmed that the inhibitory effect of NSP4 was mainly mediated through suppressing NF-κB activation, whereas not hindering NF-κB phosphorylation and nuclear translocation, and nuclear-localized NSP4 was responsible for inhibiting IFN-ß activation. We further found that the NSP4 of different pathogenic PRRSV strains exhibited differential inhibitory effect on IFN-ß, NF-κB, and IRF3 transcription, and the NSP4 of highly pathogenic (HP)-PRRSV could display more strong inhibitory effect. Finally, we determined that the amino acid at residue 155 in NSP4 contributed to its inhibitory effect for IFN-ß transcription in vitro by altering its subcellular distribution. Our findings suggest that the nucleus-localized NSP4 of PRRSV participates in the modulation of the host type I IFNs system, and also provide novel insight for understanding the pathogenesis of the Chinese HP-PRRSV.


Assuntos
Interações Hospedeiro-Patógeno , Interferon beta/antagonistas & inibidores , Interferon beta/biossíntese , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transcrição Gênica , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Análise Mutacional de DNA , Haplorrinos
14.
Virus Res ; 160(1-2): 439-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21801768

RESUMO

Recently, duck hepatitis A virus 3 (DHAV-3) with genetically distinct characteristics from DHAV-1 and DHAV-2 was recognized in South Korea and China. In this short communication, we successfully constructed a stable full-length infectious cDNA clone derived from DHAV-3 by solving instability of cloned full-length cDNA in Escherichia coli (E. coli). The cDNA fragments amplified from the genome of DHAV-3 were assembled and inserted into a low-copy-number plasmid. Finally, a full-length cDNA clone containing an engineered SacII site that served as a genetic marker was obtained. The cDNA clone showed stable by serial passages in E. coli when propagated at 25°C under low level of antibiotic selection. BHK-21 cells were transfected with transcribed RNA from the full-length cDNA clone; infectious viral particles were rescued, showing its fatality to 10-day-old duck embryos. The results indicated that the constructed full-length cDNA clone of DHAV-3 is infectious. By various virological assays, our results indicated that the rescued virus exhibited similar biological properties with the parental virus. Animal experiments revealed that the rescued virus retained the high pathogenicity to 1-day-old ducklings and could induce a fatal hepatitis indistinguishable from its parental virus. Our present studies provide a useful tool for future research on genomic functions and molecular pathogenesis of DHAV-3.


Assuntos
Clonagem Molecular , DNA Complementar/genética , Picornaviridae/genética , Picornaviridae/patogenicidade , RNA Viral/genética , Animais , Linhagem Celular , Cricetinae , Patos , Escherichia coli/genética , Engenharia Genética , Vetores Genéticos , Hepatite Viral Animal/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Plasmídeos , Análise de Sobrevida , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA