RESUMO
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , COVID-19 , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Imunidade Inata , Interferon beta/metabolismo , Receptores Imunológicos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genéticaRESUMO
SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.
Assuntos
Uso do Códon , Adaptação ao Hospedeiro , SARS-CoV-2 , Animais , Humanos , Quirópteros/genética , COVID-19/virologia , Adaptação ao Hospedeiro/genética , Vison/genética , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Seleção Genética/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Uso do Códon/genéticaRESUMO
This study is aimed to investigate whether calpain 2 (CAPN2) serves as an indicator of the hepatitis B virus (HBV) to induce hepatic fibrosis. Differentially-expressed genes (DEGs) in HBV-induced hepatic fibrosis and normal liver tissues were analyzed, and signal pathway which was analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using DEGs. Next, the gene-related network map was constructed using the Search Tool for the Retrieval of Interacting Genes. Moreover, CAPN2 protein expression, level of hepatic fibrosis, CAPN2 messenger RNA level, and protein levels of CAPN2, a-SAM, COL3A1, COL1A1, and MAPK1 were determined using Immunohistochemistry (IHC), hematoxylin and eosin, RT-qPCR, and western blot (WB), respectively. There were 420 DEGs screened in HBV-induced hepatic fibrosis and normal liver tissues, among which, 373 were significantly upregulated and 47 were obviously downregulated. KEGG analysis showed that the upregulated DEGs were mainly concentrated in extracellular matrix-receptor interaction, protein digestion, and absorption signaling pathways. The network diagram analysis showed that the DEGs, such as CAPN2, ITGAV, and CCR2, play the key role in the DEG network map, and CAPN2 related to hepatic fibrosis via MAPK1. The increased CAPN2 expression and obvious hepatic fibrosis was displayed in the HBV-induced hepatic fibrosis tissues. In addition, HBV could induce CAPN2 expression, and the interference of CAPN2 could inhibit the expression of hepatic fibrosis markers, including a-SAM, COL3A1, COL1A1, and MAPK1. CAPN2 is regarded as a biomarker of hepatic fibrosis induced by HBV.
Assuntos
Biomarcadores/análise , Calpaína/metabolismo , Vírus da Hepatite B/isolamento & purificação , Hepatite B/complicações , Cirrose Hepática/diagnóstico , Calpaína/genética , Biologia Computacional , Perfilação da Expressão Gênica , Hepatite B/virologia , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Prognóstico , Mapas de Interação de ProteínasRESUMO
BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment of malaria in Africa. However, increasing SP resistance (SPR) affects the therapeutic efficacy of the SP. As molecular markers, Pfdhfr (dihydrofolate reductase) and Pfdhps (dihydropteroate synthase) genes are widely used for SPR surveillance. This study aimed to assess the prevalence of Pfdhfr and Pfdhps genes mutations and haplotypes in Plasmodium falciparum isolates collected from Bioko Island, Equatorial Guinea (EG). METHODS: In total, 180 samples were collected in 2013-2014. The single nucleotide polymorphisms (SNPs) of the Pfdhfr and Pfdhps genes were identified with nested PCR and Sanger sequencing. The genotypes and linkage disequilibrium (LD) tests were also analysed. RESULTS: Sequences of Pfdhfr and Pfdhps genes were obtained from 92.78% (167/180) and 87.78% (158/180) of the samples, respectively. For Pfdhfr, 97.60% (163/167), 87.43% (146/167) and 97.01% (162/167) of the samples carried N51I, C59R and S108N mutant alleles, respectively. The prevalence of the Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 20.25% (32/158), 90.51% (143/158), 5.06% (8/158), 0.63% (1/158), and 3.16% (5/158) of the samples, respectively. In total, 3 unique haplotypes at the Pfdhfr locus and 8 haplotypes at the Pfdhps locus were identified. A triple mutation (CIRNI) in Pfdhfr was the most prevalent haplotype (86.83%), and a single mutant haplotype (SGKAA; 62.66%) was predominant in Pfdhps. A total of 130 isolates with 12 unique haplotypes were found in the Pfdhfr and Pfdhps combined haplotypes, 65.38% (85/130) of them carried quadruple allele combinations (CIRNI-SGKAA), whereas only one isolate (0.77%, 1/130) was found to carry the wild-type (CNCSI-SAKAA). For LD analysis, the Pfdhfr N51I was significantly associated with the Pfdhps A437G (P < 0.05). CONCLUSION: Bioko Island possesses a high prevalence of the Pfdhfr triple mutation (CIRNI) and Pfdhps single mutation (SGKAA), which will undermine the pharmaceutical effect of SP for malaria treatment strategies. To avoid an increase in SPR, continuous molecular monitoring and additional control efforts are urgently needed in Bioko Island, Equatorial Guinea.
Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Mutação , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Tetra-Hidrofolato Desidrogenase/genética , Combinação de Medicamentos , Guiné Equatorial , Frequência do Gene , Genótipo , Humanos , Desequilíbrio de Ligação , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNARESUMO
BACKGROUND: Quinine (QN) remains an effective drug for malaria treatment. However, quinine resistance (QNR) in Plasmodium falciparum has been reported in many malaria-endemic regions particularly in African countries. Genetic polymorphism of the P. falciparum Na+/H+ exchanger (pfnhe1) is considered to influence QN susceptibility. Here, ms4760 alleles of pfnhe1 were analysed from imported African P. falciparum parasites isolated from returning travellers in Wuhan, Central China. METHODS: A total of 204 dried-blood spots were collected during 2011-2016. The polymorphisms of the pfnhe1 gene were determined using nested PCR with DNA sequencing. RESULTS: Sequences were generated for 99.51% (203/204) of the PCR products and 68.63% (140/204) of the isolates were analysed successfully for the pfnhe1 ms4760 haplotypes. In total, 28 distinct ms4760 alleles containing 0 to 5 DNNND and 1 to 3 NHNDNHNNDDD repeats were identified. For the alleles, ms4760-1 (22.86%, 32/140), ms4760-3 (17.86%, 25/140), and ms4760-7 (10.71%, 15/140) were the most prevalent profiles. Furthermore, 5 undescribed ms4760 alleles were reported. CONCLUSIONS: The study offers an initial comprehensive analysis of pfnhe1 ms4760 polymorphisms from imported P. falciparum isolates in Wuhan. Pfnhe1 may constitute a good genetic marker to evaluate the prevalence of QNR in malaria-endemic and non-endemic regions.
Assuntos
Malária Falciparum/diagnóstico , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Trocadores de Sódio-Hidrogênio/genética , Alelos , Animais , Antimaláricos/farmacologia , China/epidemiologia , DNA de Protozoário/metabolismo , Resistência a Medicamentos/genética , Genótipo , Haplótipos , Humanos , Malária Falciparum/epidemiologia , Repetições de Microssatélites/genética , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Quinina/farmacologiaRESUMO
Antimalarial drug resistance developed in Plasmodium falciparum has become a problem for malaria control. Evaluation of drug resistance is the first step for effective malaria control. In this study, we investigated the gene mutations of P. falciparum using blood samples from returned Chinese migrant workers in order to identify drug resistance-associated molecular markers. These workers returned from Africa and Southeast Asia (SEA) during 2011 to 2016. Polymorphisms in pfcrt, pfmdr1, and k13-propeller genes and the haplotype patterns of Pfcrt and Pfmdr1 were analyzed. The results showed the presence of four haplotypes of Pfcrt codons 72 to 76, including CVMNK (wild type), SVMNT and CVIET (mutation types), and CV M/I N/E K/T (mixed type), with 50.57%, 1.14%, 25.00%, and 23.30% prevalence, respectively. For Pfmdr1, N86Y (22.28%) and Y184F (60.01%) were the main prevalent mutations (mutations are underlined). The prevalence of mutation at position 550, 561, 575, and 589 of K13-propeller were 1.09%, 0.54%, 0.54%, and 0.54%, respectively. These data suggested that Pfcrt, Pfmdr1, and K13-propeller polymorphisms are potential markers to assess drug resistance of P. falciparum in China, Africa, and SEA.
Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos , África , China , Haplótipos/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , MigrantesRESUMO
To observe the clinical efficacy of modified Chaiping decoction for HBeAg-negative chronic hepatitis B under DaBianZheng theory(syndrome differentiation theory) guidance with understanding of purgative detoxing and modern pharmacology research of traditional Chinese medicine. The patients with HBeAg-negative chronic hepatitis B(n=119) were randomly divided into treatment group(n=69) and control group(n=50). The patients in treatment group were treated with the modified Chaiping decoction(6 doses per week, one dose every day in two times by oral administration), and the patients in control group were treated with lamivudine(LAM) (100 mg/time, once a day). All of patients were treated for 48 weeks. The liver functions, levels of DNA of hepatitis B virus (HBV-DNA) and clinical symptoms were observed at weeks 12, 24, 36 and 48 in both groups. The levels of ALT and HBV-DNA in serum were also observed 24 weeks and 48 weeks after treatment in two groups. There was no significant difference in total effective rate between treatment group and control group at week 24, but the total effective rate in treatment group was higher than that in the control group at weeks 12, 36 and 48(P<0.05); the improvement of liver functions in the treatment group was superior than that in the control group at weeks 12, 36 weeks and 48(P<0.01 or P<0.05), but there was no significant difference at week 24; the improvement of serum HBV-DNA in the treatment group was significantly lower than that in the control group at week 12(P<0.01), but there was no significant difference at weeks 24, 36 and 48; the negative converse rate of serum HBV-DNA in the treatment group was lower than that in the control group at weeks 12, 24 and 36(P<0.01 or P<0.05), but there was no significant difference at week 48; the improvement of fatigue, lassitude, abdominal distension and hypochondriac pain in treatment group was significantly better than that in the control group at weeks 12 and 24(P<0.01 or P<0.05), but there was no significant difference in the improvement of fatigue and hypochondriac pain at weeks 36 and 48; the abnormal rate of ALT in treatment group was significantly lower than that in the control group 24 weeks and 48 weeks after drug withdrawal(P<0.01); there was no significant difference in abnormal rate of serum HBV-DNA 24 weeks after drug withdrawal, but it was significantly lower than that in the control group 48 weeks after drug withdrawal(P<0.05). Modified Chaiping decoction with combination of long term medication and intermittent administration showed better clinical efficacy on HBeAg-negative chronic hepatitis B. Its prescription compositions shall be further optimized and consummated under guidance of disease differentiation and syndrome differentiation, and its clinical research on hepatic fibrosis and living quality shall be carried out.
Assuntos
Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , DNA Viral/sangue , Antígenos E da Hepatite B , Vírus da Hepatite B , Humanos , Lamivudina/uso terapêuticoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is crucial for protecting vulnerable individuals, yet individuals with type 2 diabetes mellitus (T2DM) often exhibit impaired vaccine responses. Emerging evidence suggests that the composition of the host microbiota, crucial in immune regulation and development, influences vaccine efficacy. This study aimed to characterize the relationships between the SARS-CoV-2 inactivated vaccine and the host microbiota (specifically, gut and lung microbiota) of C57BL/6 mice with T2DM. Employing 16S rRNA metagenomic sequencing and ultra-high-performance liquid chromatography-mass spectrometry, we observed lower alpha diversity and distinct beta diversity in fecal microbiota before vaccination and in gut microbiota 28 days post-vaccination between T2DM mice and healthy mice. Compared with healthy mice, T2DM mice showed a higher Firmicutes/Bacteroidetes ratio 28 days post-vaccination. Significant alterations in gut microbiota composition were detected following vaccination, while lung microbiota remained unchanged. T2DM was associated with a diminished initial IgG antibody response against the spike protein, which subsequently normalized after 28 days. Notably, the initial IgG response positively correlated with fecal microbiota alpha diversity pre-vaccination. Furthermore, after 28 days, increased relative abundance of gut probiotics (Bifidobacterium and Lactobacillus) and higher levels of the gut bacterial tryptophan metabolite, indole acrylic acid, were positively associated with IgG levels. These findings suggest a potential link between vaccine efficacy and gut microbiota composition. Nonetheless, further research is warranted to elucidate the precise mechanisms underlying the impact of the gut microbiome on vaccine response. Overall, this study enhances our understanding of the intricate relationships among host microbiota, SARS-CoV-2 vaccination, and T2DM, with potential implications for improving vaccine efficacy. IMPORTANCE: Over 7 million deaths attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 6 May 2024 underscore the urgent need for effective vaccination strategies. However, individuals with type 2 diabetes mellitus (T2DM) have been identified as particularly vulnerable and display compromised immune responses to vaccines. Concurrently, increasing evidence suggests that the composition and diversity of gut microbiota, crucial regulators of immune function, may influence the efficacy of vaccines. Against this backdrop, our study explores the complex interplay among SARS-CoV-2 inactivated vaccination, T2DM, and host microbiota. We discover that T2DM compromises the initial immune response to the SARS-CoV-2 inactivated vaccine, and this response is positively correlated with specific features of the gut microbiota, such as alpha diversity. We also demonstrate that the vaccination itself induces alterations in the composition and structure of the gut microbiota. These findings illuminate potential links between the gut microbiota and vaccine efficacy in individuals with T2DM, offering valuable insights that could enhance vaccine responses in this high-risk population.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Diabetes Mellitus Tipo 2 , Fezes , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vacinas de Produtos Inativados , Animais , Camundongos , Diabetes Mellitus Tipo 2/imunologia , Vacinas de Produtos Inativados/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Fezes/microbiologia , Vacinas contra COVID-19/imunologia , Imunoglobulina G/sangue , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Pulmão/imunologia , Feminino , Masculino , Probióticos/administração & dosagem , Anticorpos Antivirais/sangue , Eficácia de VacinasRESUMO
Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Fosfoproteínas , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/diagnóstico , Fosfoproteínas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genéticaRESUMO
The nucleocapsid protein of SARS-CoV-2 plays significant roles in viral assembly, immune evasion, and viral stability. Due to its immunogenicity, high expression levels during COVID-19, and conservation across viral strains, it represents an attractive target for antiviral treatment. In this study, we identified and characterized a single-stranded DNA aptamer, N-Apt17, which effectively disrupts the liquid-liquid phase separation (LLPS) mediated by the N protein. To enhance the aptamer's stability, a circular bivalent form, cb-N-Apt17, was designed and evaluated. Our findings demonstrated that cb-N-Apt17 exhibited improved stability, enhanced binding affinity, and superior inhibition of N protein LLPS; thus, it has the potential inhibition ability on viral replication. These results provide valuable evidence supporting the potential of cb-N-Apt17 as a promising candidate for the development of antiviral therapies against COVID-19.IMPORTANCEVariants of SARS-CoV-2 pose a significant challenge to currently available COVID-19 vaccines and therapies due to the rapid epitope changes observed in the viral spike protein. However, the nucleocapsid (N) protein of SARS-CoV-2, a highly conserved structural protein, offers promising potential as a target for inhibiting viral replication. The N protein forms complexes with genomic RNA, interacts with other viral structural proteins during virion assembly, and plays a critical role in evading host innate immunity by impairing interferon production during viral infection. In this investigation, we discovered a single-stranded DNA aptamer, designated as N-Apt17, exhibiting remarkable affinity and specificity for the N protein. Notably, N-Apt17 disrupts the liquid-liquid phase separation (LLPS) of the N protein. To enhance the stability and molecular recognition capabilities of N-Apt17, we designed a circular bivalent DNA aptamer termed cb-N-Apt17. In both in vivo and in vitro experiments, cb-N-Apt17 exhibited increased stability, enhanced binding affinity, and superior LLPS disrupting ability. Thus, our study provides essential proof-of-principle evidence supporting the further development of cb-N-Apt17 as a therapeutic candidate for COVID-19.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Humanos , SARS-CoV-2/genética , DNA de Cadeia Simples/farmacologia , Vacinas contra COVID-19 , Antivirais/farmacologiaRESUMO
BACKGROUND: Hepatic progenitor cells (HPCs) play an important role in the treatment of chronic liver disease. OBJECTIVES: To investigate the effect and mechanism of long noncoding RNAs/small nucleolar RNA host gene 12 (lncRNA SNHG12) on the proliferation and migration of the HPC cell line WB-F344. MATERIAL AND METHODS: Hepatic progenitor cells were divided into a no-treatment group (sham), empty vector transfection of plasmid pcDNA3.1 (NC vector), pcDNA3.1-SNHG12 (SNHG12), negative short hairpin RNA (sh-NC), SNHG12 shRNA (sh-SNHG12), and pcDNA3.1-SNHG12+salinomycin intervention (SNHG12+salinomycin) groups. Cell proliferation, cell cycle and migration ability, as well as albumin (ALB), alpha-fetoprotein (AFP), â-catenin, cyclin D1, and c-Myc protein expression in each group were determined using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell migration assays, enzyme-linked immunosorbent assay (ELISA), and western blot. RESULTS: The overexpression of lncRNA SNHG12 significantly upregulated proliferation, migration and cell cycle progression of WB-F344 cells. Furthermore, the overexpression of lncRNA SNHG12 increased the level of ALB, and the protein expression of â-catenin, cyclin D1 and c-Myc in the cell line, while decreasing the level of AFP. Conversely, the knockdown of lncRNA SNHG12 displayed the opposite effects. The inhibition of the Wnt/â-catenin signaling pathway with salinomycin significantly downregulated the â-catenin, cyclin D1 and c-Myc protein expression in WB-F344 cells. CONCLUSIONS: The lncRNA SNHG12 promotes the proliferation and migration of WB-F344 cells via activating the Wnt/â-catenin pathway.
Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Ciclina D1 , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/farmacologia , Movimento Celular/genética , Via de Sinalização Wnt/genética , RNA Interferente Pequeno , Proliferação de Células/genética , Células-Tronco , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Severe COVID-19 patients exhibit impaired IFN-I response due to decreased IFN-ß production, allowing persistent viral load and exacerbated inflammation. While the SARS-CoV-2 nucleocapsid (N) protein has been implicated in inhibiting innate immunity by interfering with IFN-ß signaling, the specific underlying mechanism still needs further investigation for a comprehensive understanding. This study reveals that the SARS-CoV-2 N protein enhances interaction between the human SUMO-conjugating enzyme UBC9 and MAVS. Increased MAVS-UBC9 interaction leads to enhanced SUMOylation of MAVS, inhibiting its ubiquitination, resulting in the inhibition of phosphorylation events involving IKKα, TBK1, and IRF3, thus disrupting IFN-ß signaling. This study highlights the role of the N protein of SARS-CoV-2 in modulating the innate immune response by affecting the MAVS SUMOylation and ubiquitination processes, leading to inhibition of the IFN-ß signaling pathway. These findings shed light on the complex mechanisms utilized by SARS-CoV-2 to manipulate the host's antiviral defenses and provide potential insights for developing targeted therapeutic strategies against severe COVID-19.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Transdução de Sinais , Sumoilação , UbiquitinaçãoRESUMO
BACKGROUND: Molecular markers for monitoring resistance could help improve malaria treatment policies. Delayed clearance of Plasmodium falciparum by artemisinin-based combination therapies (ACTs) has been reported in several countries. In addition to PfKelch13 (pfk13), new drug resistance genes, P. falciparum ubiquitin-specific protease 1 (pfubp1) and the eadaptor protein complex 2 mu subunit (pfap2mu), have been identified as being linked to ACTs. This study investigated the prevalence of single-nucleotide polymorphisms (SNPs) in clinical P. falciparum isolates pfubp1 and pfap2mu imported from Africa and Southeast Asia (SEA) to Wuhan, China, to provide baseline data for antimalarial resistance monitoring in this region. METHODS: Peripheral venous blood samples were collected in Wuhan, China, from August 2011 to December 2019. The Pfubp1 and pfap2mu SNPs of P. falciparum were determined by nested PCR and Sanger sequencing. RESULTS: In total, 296 samples were collected. Subsequently, 92.23% (273/296) were successfully amplified and sequenced for Pfubp1. There were 60.07% (164/273) wild-type strains and 39.93% (109/273) mutant strains. The pfap2mu gene was divided into three fragments for amplification, and 82.77% (245/296), 90.20% (267/296) and 94.59% (280/296) were sequenced successfully. Genotypes reportedly associated with ACTs resistance detected in this study included pfubp1 D1525E as well as E1528D and pfap2mu S160N. The mutation prevalence rates were 10.99% (30/273), 13.19% (36/273) and 11.24% (30/267), respectively. These are all focused on Congo, Nigeria and Angola. Known delayed-clearance parasite mutations have also been found in SEA. CONCLUSIONS: The existence of mutation sites of known clearance genes detected in the isolates in this study, including D1525E and E1528D in the pfubp1 gene and S160N in the pfap2mu gene, further proved the risk of ACTs resistance. Constant vigilance is therefore needed to protect the effectiveness of ACTs and to prevent the spread of drug-resistant P. falciparum. Further studies in malaria-endemic countries are needed to further validate potential genetic markers for monitoring parasite populations in Africa and SEA.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Parasitos , Animais , Angola , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , China/epidemiologia , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: Hepatitis B virus (HBV) causes acute and chronic infection in the clinic. Hepatocellular carcinoma (HCC) is closely linked to HBV infection. Serum Golgi protein 73 (GP73) increases during HBV infection. However, the role of GP73 during HBV infection and the occurrence of HBV-related HCC is still poorly understood. METHODS: The underlying role of HBV-induced GP73 in regulating HCC development was investigated in this study. GP73 expression in HBV-related clinical HCC tissues and in HBV-infected hepatoma cells and primary human hepatocytes was evaluated by immunohistochemistry, ELISAs, Western blotting and quantitative real-time PCR (qRT-PCR) analysis. Tumorigenicity of GP73 overexpressed cells was detected by flow cytometry, qRT-PCR, xenograft nude mouse analyses and sphere formation assays. The effects of GP73 and HBV infection on host innate immune responses in hepatocytes were further investigated by Western blotting and qRT-PCR analysis. RESULTS: Initially, we confirmed that HBV-positive HCC tissues had significantly higher expression of GP73. Ectopic expression of the HBV gene could induce GP73 expression in primary human hepatocytes and hepatoma cells in vitro. In addition, we discovered that GP73 promotes HCC in both normal liver cells and hepatoma cells. We also found that ectopic expression of HBV genes increases GP73 expression, suppressing the host's innate immune responses in hepatocytes. CONCLUSIONS: Our results demonstrate that HBV facilitates HCC development by activating GP73 to repress the host's innate immune response. This study adds to our understanding of the pathogenesis of HBV infection-induced HCC. The findings also provide preclinical support for GP73 as a potential HCC prevention or treatment target.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has emerged in the last 2 years. The accessory protein ORF7a has been proposed as an immunomodulating factor that can cause dramatic inflammatory responses, but it is unknown how ORF7a interacts with host cells. We show that ORF7a induces cell apoptosis by recruiting the prosurvival factor BclXL to the endoplasmic reticulum (ER) via the exposed C-terminal residues Lys117 and Lys119. Simultaneously, ORF7a activates ER stress via the PERK-elF2α-CHOP pathway and inhibits the expression of endogenous BclXL, resulting in enhanced cell apoptosis. Ubiquitination of ORF7a interrupts the interaction with BclXL in the ER and weakens the activation of ER stress, which to some extent rescues the cells. Our work demonstrates that SARS-CoV-2 ORF7a hires antiapoptosis protein and aggregates on the ER, resulting in ER stress and apoptosis initiation. On the other hand, ORF7a utilizes the ubiquitin system to impede and escape host elimination, providing a promising potential target for developing strategies for minimizing the COVID-19 pandemic. IMPORTANCE Viruses struggle to reproduce after infecting cells, and the host eliminates infected cells through apoptosis to prevent virus spread. Cells adopt a special ubiquitination code to protect against viral infection, while ORF7a manipulates and exploits the ubiquitin system to eliminate host cells' effect on apoptosis and redirect cellular pathways in favor of virus survival. Our results revealed that SARS-CoV-2-encoded accessory protein ORF7a recruits prosurvival factor BclXL to the ER and activates the cellular ER stress response resulting in the initiation of programmed death to remove virus-infected cells. Ubiquitination of ORF7a blocked the recruitment of BclXL and suppressed the ER stress response, which helps to counteract cell apoptosis and rescue cell fate. These findings help us understand the mechanism of SARS-CoV-2 invasion and contribute to a theoretical foundation for the clinical prevention of COVID-19.
Assuntos
Apoptose , COVID-19 , Estresse do Retículo Endoplasmático , Proteínas Virais , Proteína bcl-X , Humanos , SARS-CoV-2 , Ubiquitinação , Ubiquitinas , Proteínas Virais/química , Proteína bcl-X/metabolismoRESUMO
The genus of Plasmodium parasites can cause malaria, which is a prevalent infectious disease worldwide, especially in tropical and subtropical regions. C57BL/6 mice infected with P. berghei ANKA (PbA) will suffer from experimental cerebral malaria (ECM). However, the gut microbiota in C57BL/6 mice has rarely been investigated, especially regarding changes in the intestinal environment caused by infectious parasites. P. berghei ANKA-infected (PbA group) and uninfected C57BL/6 (Ctrl group) mice were used in this study. C57BL/6 mice were infected with PbA via intraperitoneal injection of 1 × 106 infected red blood cells. Fecal samples of two groups were collected. The microbiota of feces obtained from both uninfected and infected mice was characterized by targeting the V4 region of the 16S rRNA through the Illumina MiSeq platform. The variations in the total gut microbiota composition were determined based on alpha and beta diversity analyses of 16S rRNA sequencing. The raw sequences from all samples were generated and clustered using ≥ 97% sequence identity into many microbial operational taxonomic units (OTUs). The typical microbiota composition in the gut was dominated by Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia at the phylum level. Bacteroidetes and Verrucomicrobia were considerably decreased after PbA infection compared with the control group (Ctrl), while Firmicutes and Proteobacteria were increased substantially after PbA infection compared with Ctrl. The alpha diversity index showed that the observed OTU number was increased in the PbA group compared with the Ctrl group. Moreover, the discreteness of the beta diversity revealed that the PbA group samples had a higher number of OTUs than the Ctrl group. LEfSe analysis revealed that several potential bacterial biomarkers were clearly related to the PbA-infected mice at the phylogenetic level. Several bacterial genera, such as Acinetobacter, Lactobacillus, and Lachnospiraceae_NK4A136_group, were overrepresented in the PbA-infected fecal microbiota. Meanwhile, a method similar to gene coexpression network construction was used to generate the OTU co-abundance units. These results indicated that P. berghei ANKA infection could alter the gut microbiota composition of C57BL/6 mice. In addition, potential biomarkers should offer insight into malaria pathogenesis and antimalarial drug and malaria vaccine studies.
Assuntos
Microbioma Gastrointestinal , Malária , Animais , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Plasmodium berghei , RNA Ribossômico 16S/genéticaRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), which is causing the coronavirus disease-2019 (COVID-19) pandemic, poses a global health threat. However, it is easy to confuse COVID-19 with seasonal influenza in preliminary clinical diagnosis. In this study, the differences between influenza and COVID-19 in epidemiological features, clinical manifestations, comorbidities and pathogen biology were comprehensively compared and analyzed. SARS-CoV-2 causes a higher proportion of pneumonia (90.67 vs. 17.07%) and acute respiratory distress syndrome (12.00 vs. 0%) than influenza A virus. The proportion of leukopenia for influenza patients was 31.71% compared with 12.00% for COVID-19 patients (P = 0.0096). The creatinine and creatine kinase were significantly elevated when there were COVID-19 patients. The basic reproductive number (R0) for SARS-CoV-2 is 2.38 compared with 1.28 for seasonal influenza A virus. The mutation rate of SARS-CoV-2 ranges from 1.12 × 10-3 to 6.25 × 10-3, while seasonal influenza virus has a lower evolutionary rate (0.60-2.00 × 10-6). Overall, this study compared the clinical features and outcomes of medically attended COVID-19 and influenza patients. In addition, the S477N and N439K mutations on spike may affect the affinity with receptor ACE2. This study will contribute to COVID-19 control and epidemic surveillance in the future.
Assuntos
COVID-19 , Influenza Humana , Adulto , Número Básico de Reprodução , COVID-19/diagnóstico , Humanos , Influenza Humana/diagnóstico , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/virologiaRESUMO
The immune cells within the tumor microenvironment (TME) play important roles in tumorigenesis. It has been known that these tumor associated immune cells may possess tumor-antagonizing or tumor-promoting functions. Although the tumor-antagonizing immune cells within TME tend to target and kill the cancer cells in the early stage of tumorigenesis, the cancer cells seems to eventually escape from immune surveillance and even inhibit the cytotoxic function of tumor-antagonizing immune cells through a variety of mechanisms. The immune evasion capability, as a new hallmark of cancer, accidently provides opportunities for new strategies of cancer therapy, namely harnessing the immune cells to battle the cancer cells. Recently, the administrations of immune checkpoint modulators (represented by anti-CTLA4 and anti-PD antibodies) and adoptive immune cells (represented by CAR-T) have exhibited unexpected antitumor effect in multiple types of cancer, bringing a new era for cancer therapy. Here, we review the biological functions of immune cells within TME and their roles in cancer immunotherapy, and discuss the perspectives of the basic studies for improving the effectiveness of the clinical use.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Microambiente Tumoral/imunologia , Antineoplásicos Imunológicos/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunidade Celular , Imunoterapia Adotiva/tendências , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacosRESUMO
To investigate the early epidemic of COVID-19, a total of 176 confirmed COVID-19 cases in Shiyan city, Hubei province, China were surveyed. Our data indicated that the rate of emergence of early confirmed COVID-19 cases in Hubei province outside Wuhan was dependent on migration population, and the second-generation of patients were family clusters originating from Wuhan travelers. Epidemiological investigation indicated that the reproductive number (R0) under containment strategies was 1.81, and asymptomatic SARS-CoV-2 carriers were contagious with a transmission rate of 10.7%. Among the 176 patients, 53 were admitted to the Renmin Hospital of Hubei University of Medicine. The clinical characteristics of these 53 patients were collected and compared based on a positive RT-PCR test and presence of pneumonia. Clinical data showed that 47.2% (25/53) of COVID-19 patients were co-infected with Mycoplasma pneumoniae, and COVID-19 patients coinfected with M. pneumoniae had a higher percentage of monocytes (P < 0.0044) and a lower neutrophils percentage (P < 0.0264). Therefore, it is important to assess the transmissibility of infected asymptomatic individuals for SARS-CoV-2 transmission; moreover, clinicians should be alert to the high incidence of co-infection with M. pneumoniae in COVID-19 patients.