RESUMO
BACKGROUND: As a white biotechnological trend, esterases are thought to be among the most active enzymes' classes in biocatalysis and synthesis of industrially importance organic compounds. Esterases are used in many applications such as the manufacture of pharmaceuticals, cosmetics, leather, textile, paper, food, dairy products, detergents, and treatment of some environmental pollutants. RESULTS: A poly-histidine moiety was added to the C-terminal end of the Geobacillus sp. gene encoding carboxyl esterase (EstB, ac: KJ735452) to facilitate one-step purification. This recombinant protein was successfully expressed in Escherichia coli (E. coli) under control of Lambda promoter (λ). An open reading frame (ORF) of 1500 bps encoding a polypeptide of 499 amino acid residues and a calculated molecular weight (54.7 kD) was identified as carboxyl-esterase B due to its conserved glycine-X-serine-X-glycine motif (G-X-S-X-G) and its high similarity toward other carboxyl esterases, where the 3-D tertiary structure of EstB was determined based on high homology % (94.8) to Est55. The expression was scaled up using 7-L stirred tank bioreactor, where a maximum yield of enzyme was obtained after 3.5 h with SEA 51.76 U/mg protein. The expressed protein was purified until unity using immobilized metal affinity chromatography (IMAC) charged with cobalt and then characterized. The purified enzyme was most active at pH 8.0 and remarkably stable at pH (8-10). Temperature optimum was recorded at 65 °C, and it kept 70% of its activity after 1-h exposure to 60 °C. The active half-live of enzyme was 25 min at 70 °C and a calculated T melting (Tm) at 70 °C. The determined reaction kinetics Michaelis-Menten constant (Km), maximum velocity rate (Vmax), the turnover number (Kcat), and catalytic efficiency (Kcat/Km) of the pure enzyme were found 22.756 mM, 164.47 U/ml (59.6 min-1), and (2.619 mol/ min), respectively. CONCLUSION: Creation of a recombinant 6 × -His estB derived from a thermophile Geobacillus sp. was performed successfully and then overexpressed under λ-promoter. In a bench scale bioreactor, the overexpression was grown up, followed by one-step purification and biochemical characterization. The recorded promising pH and temperature stability properties suggest that this expressed carboxyl esterase could be used in many industrial sectors.
RESUMO
There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L-1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h-1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.