Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2301364120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487078

RESUMO

In nearly all cases of underwater adhesion, water molecules typically act as a destroyer. Thus, removing interfacial water from the substrate surfaces is essential for forming super-strong underwater adhesion. However, current methods mainly rely on physical means to dislodge interfacial water, such as absorption, hydrophobic repulsion, or extrusion, which are inefficient in removing obstinate hydrated water at contact interface, resulting in poor adhesion. Herein, we present a unique means of reversing the role of water to assist in realizing a self-strengthening liquid underwater adhesive (SLU-adhesive) that can effectively remove water at contact interface. This is achieved through multiscale physical-chemical coupling methods across millimeter to molecular levels and self-adaptive strengthening of the cohesion during underwater operations. As a result, strong adhesion over 1,600 kPa (compared to ~100 to 1,000 kPa in current state of the art) can be achieved on various materials, including inorganic metal and organic plastic materials, without preloading in different environments such as pure water, a wide range of pH solutions (pH = 3 to 11), and seawater. Intriguingly, SLU-adhesive/photothermal nanoparticles (carbon nanotubes) hybrid materials can significantly reduce the time required for complete curing from 24 h to 40 min using near-infrared laser radiation due to unique thermal-response of the chemical reaction rate. The excellent adhesion property and self-adaptive adhesion procedure allow SLU-adhesive materials to demonstrate great potential for broad applications in underwater sand stabilization, underwater repair, and even adhesion failure detection as a self-reporting adhesive. This concept of "water helper" has potential to advance underwater adhesion and manufacturing strategies.

2.
Small ; : e2404011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864206

RESUMO

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

3.
Bioengineering (Basel) ; 11(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391624

RESUMO

Glaucoma is a leading cause of irreversible blindness, and early detection and treatment are crucial for preventing vision loss. This review aims to provide an overview of current diagnostic and treatment standards, recent medical and technological advances, and current challenges and future outlook for wearable glaucoma diagnostics and therapeutics. Conventional diagnostic techniques, including the rebound tonometer and Goldmann Applanation Tonometer, provide reliable intraocular pressure (IOP) measurement data at single-interval visits. The Sensimed Triggerfish and other emerging contact lenses provide continuous IOP tracking, which can improve diagnostic IOP monitoring for glaucoma. Conventional therapeutic techniques include eye drops and laser therapies, while emerging drug-eluting contact lenses can solve patient noncompliance with eye medications. Theranostic platforms combine diagnostic and therapeutic capabilities into a single device. Advantages of these platforms include real-time monitoring and personalized medication dosing. While there are many challenges to the development of wearable glaucoma diagnostics and therapeutics, wearable technologies hold great potential for enhancing glaucoma management by providing continuous monitoring, improving medication adherence, and reducing the disease burden on patients and healthcare systems. Further research and development of these technologies will be essential to optimizing patient outcomes.

4.
Adv Mater ; 35(18): e2211673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36932878

RESUMO

As the soaring demand for energy storage continues to grow, batteries that can cope with extreme conditions are highly desired. Yet, existing battery materials are limited by weak mechanical properties and freeze-vulnerability, prohibiting safe energy storage in devices that are exposed to low temperature and unusual mechanical impacts. Herein, a fabrication method harnessing the synergistic effect of co-nonsolvency and "salting-out" that can produce poly(vinyl alcohol) hydrogel electrolytes with unique open-cell porous structures, composed of strongly aggregated polymer chains, and containing disrupted hydrogen bonds among free water molecules, is introduced. The hydrogel electrolyte simultaneously combines high strength (tensile strength 15.6 MPa), freeze-tolerance (< -77 °C), high mass transport (10× lower overpotential), and dendrite and parasitic reactions suppression for stable performance (30 000 cycles). The high generality of this method is further demonstrated with poly(N-isopropylacrylamide) and poly(N-tertbutylacrylamide-co-acrylamide) hydrogels. This work takes a further step toward flexible battery development for harsh environments.

5.
Adv Mater ; : e2307632, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126914

RESUMO

Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1 ), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.

6.
iScience ; 24(9): 102989, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34505006

RESUMO

Hydrogels have gained tremendous attention due to their versatility in soft electronics, actuators, biomedical sensors, etc. Due to the high water content, hydrogels are usually soft, weak, and freeze below 0°C, which brings severe limitations to applications such as soft robotics and flexible electronics in harsh environments. Most existing anti-freezing gels suffer from poor mechanical properties and urgently need further improvements. Here, we took inspirations from tendon and coniferous trees and provided an effective method to strengthen polyvinyl alcohol (PVA) hydrogel while making it freeze resistant. The salting-out effect was utilized to create a hierarchically structured polymer network, which induced superior mechanical properties (Young's modulus: 10.1 MPa, tensile strength: 13.5 MPa, and toughness: 127.9 MJ/m3). Meanwhile, the cononsolvency effect was employed to preserve the structure and suppress the freezing point to -60°C. Moreover, we have demonstrated the broad applicability of our material by fabricating PVA hydrogel-based hydraulic actuators and ionic conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA