Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(13)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39356063

RESUMO

An effective manipulation of polaron pairs (PPs) for realizing amplified magneto-photocurrent (AMPC) is of critical importance toward the development of low power consumption and high-performance organic spin-optoelectronic devices, for instance magneto-photo-volatile memories. By far, it is challenging and there is a lack of method to reach AMPC. The typical magneto-photocurrent due to the light-matter interanion is primarily for unveiling the spin-dependent electron-hole dissociation in organic solar cells. Herein, we achieved an AMPC of ∼140% in nonfullerene organic bulk heterojunction systems at room temperature. We found that the amplification can be effectively triggered by a multi-field to a large number of photogenerated PPs at intermediate charge transfer states. We further postulate that, at steady state, they may experience a cyclic photophysical process due to the triplet-exciton polaron interaction. This study paves the way for the realization of AMPC in the organic spin-optoelectronic system.

2.
Langmuir ; 38(14): 4434-4441, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35357166

RESUMO

Based on previous research, a new coassembly formed by a porphyrin derivative (IPETPP), which contains a flexible substituent of m-phthalic acid, is observed with coronene (COR) molecules at a higher concentration. Besides, a fresh IPETPP self-assembly formed at a lower concentration and another new coassembly with COR molecules are obtained. Moreover, the addition of a series of bipyridines alters the diamond arrangement of IPETPP, which enhances the stability of the two-component structures. It is unprecedented that bipyridine derivatives break intermolecular hydrogen bonds containing m-phthalic acid substituents. All the coassemblies are investigated by scanning tunneling microscopy on a highly oriented pyrolytic graphite. Combined with density functional theory, the formation mechanism of the assembled structures is revealed. These results would contribute to understanding the interfacial crystal behaviors and probably provide an efficient pathway to regulate the binary structures.

3.
Langmuir ; 37(39): 11544-11551, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546063

RESUMO

A porphyrin derivative called 5,15-di(4-carboxyphenyl)porphyrin (H2DCPp) with carboxyl groups successfully self-assembled on a highly oriented pyrolytic graphite (HOPG) surface and its co-assembly structures with three kinds of pyridine molecules were investigated by scanning tunneling microscopy (STM) with atomic resolution. H2DCPp arranged in a long-range ordered structure, and both 1,4-bis (pyridin-4-ylethynyl) benzene (BisPy), 4,4'-bipyridine (BP) and 1,3,5-tris(pyridin-4-ylethynyl) benzene (TPYB) molecules successfully regulated the host molecules as guest molecules. The well-organized model optimized by density functional theory (DFT) calculations reveals the detailed behavior of the assembly characteristics and regulation of porphyrin derivatives, which is helpful for the research and development of solar cells and nanodevices.

4.
Langmuir ; 37(24): 7486-7491, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110160

RESUMO

Two kinds of π-conjugated macrocycles with aggregation-induced emission (AIE) properties were investigated by scanning tunneling microscopy (STM) to elucidate their self-assembly behaviors and interaction with C60 on a highly oriented pyrolytic graphite (HOPG) surface. Both TPEMC and TPEMCS could self-assemble into orderly cavity structures. However, C60 guest molecules could only successfully enter the cavity of TPEMC to form a stable TPEMC + C60 host-guest coassembly structure. Density functional theory (DFT) calculations were also used to interpret the assembly mechanisms. This work disclosed the assembly characteristic of these new types of conjugated macrocyclic compounds, which was helpful to develop new structural porous luminescent materials.

5.
Nanotechnology ; 32(38)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34098536

RESUMO

Macrocyclic self-assemblies have gained great interest for diversified structures and potential applications, such as catalysis, magnetism, photovoltaic devices, organic light-emitting diodes. Macrocycles can present regular assembly systems at the liquid/solid interface due to theπ-conjugated structures. Furthermore, suitable guest molecules can be selected for constructing multi-component supramolecular co-assemblies. This review mainly summarizes macrocyclic self-assembly structures with different shapes in recent years. All of the studies are completed with the assistance of scanning tunneling microscope at the liquid/solid interface.

6.
Langmuir ; 36(14): 3879-3886, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32212611

RESUMO

Scanning tunneling microscopy (STM) was utilized to disclose four novel core-modified rubyrin self-assembly behaviors on the highly-oriented pyrolytic graphite (HOPG) surface, of which N2S4-OR(1)/N2Se4-OR(2) had no phenanthrene pyrrole ring and N2S4-OR(3)/N2Se4-OR(4) had phenanthrene-fused pyrrole rings and meso-aryl substituents. It was discovered that the core-modified rubyrin could self-assemble into either face-on or edge-on monolayer structures selectively at the liquid/HOPG interface in different solvents. There was an obvious solvent-dependent self-assembly for N2S4-OR(3)/N2Se4-OR(4), which adopted an edge-on and face-on structure in 1-phenyloctane and 1-heptanoic acid solvents, respectively, whereas N2S4-OR(1)/N2Se4-OR(2) showed no obvious difference in the assembly structure, which both adopted a face-on structure in the two solvents. Density functional theory (DFT) calculations were also utilized to reveal the relevant self-assembly mechanisms. This study shows a typical solvent effect regulating core-modified rubyrin self-assembly, which is essential for porphyrin-based functional devices' design and manufacture.

7.
Langmuir ; 35(20): 6571-6577, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31002519

RESUMO

Adequate control over the structures of molecular building blocks plays an important role in the fabrication of desired supramolecular nanostructures at interfaces. In this study, the formation of a pure hydrogen-bonding co-assembly supramolecular nanonetwork on a highly oriented pyrolytic graphite surface was demonstrated by means of a scanning tunneling microscope. The thermal annealing process was conducted to monitor the temperature-triggered structural transformation of the self-assembled nanonetwork. On the basis of the single-molecule-level resolution scanning tunneling microscopy images, together with the density functional theory calculations, the formation mechanisms of the formed nanoarrays were proposed. The results have great significance with regard to controlled construction of complex nanostructures on the surface.

8.
Langmuir ; 34(40): 11952-11959, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30220211

RESUMO

The nanostructure of bulk heterojunction in an organic solar cell dominating the electron transport process plays an important role in improving the device efficiency. However, there is still a great need for further understanding the local nanostructures from the viewpoint of molecular design because of the complex alignment in the solid film. In this work, four kinds of photovoltaic materials containing a diketopyrrolopyrrole (DPP) unit combined with other different building blocks were selected and their self-assembled structures on a solid surface were studied by scanning tunneling microscopy technique in combination with theory calculations. The results reveal these DPP-based photovoltaic molecules self-assembled into different nanostructures, which strongly depend on the chemical structure, in particular the backbones and alkyl side chains. The planarities of backbones are affected both by molecule-substrate interaction and steric hindrance induced by the substituted thiophene or benzo[ b]thiophene units on DPP and porphyrin building blocks. The substituted branched alkyl side chains are out of the plane, which are influenced by the alignments of molecular backbones. In addition, the solution concentration also shows a large effect on the self-assembled nanostructures. This systematic research on the self-assembled structures of DPP-based semiconductors on a surface would provide guidance for designing materials and controlling the morphology of a donor/acceptor heterojunction system.

9.
Phys Chem Chem Phys ; 19(46): 31284-31289, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29148550

RESUMO

In this investigation, the two-dimensional (2D) self-assembly nanostructures of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules (L1, L2-6 and L2-12) at the 1-phenyloctane/highly oriented pyrolytic graphite (HOPG) interface were thoroughly studied using scanning tunneling microscopy (STM). Comparative STM studies with their triangular Pt(ii) diimine complexes (C1, C2-6 and C2-12) were also carried out. Based on careful measurements on single molecule level STM images and density functional theory (DFT) calculations, the formation mechanisms of the nanoarrays formed were revealed.

10.
Phys Chem Chem Phys ; 18(46): 31725-31731, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27841397

RESUMO

The nanostructures of a series of conjugated oligo(p-phenylene-ethynylene)s (OPE) adsorbed on a surface were thoroughly studied using scanning tunneling microscopy (STM). These oligomers have different backbone lengths and side chains. As a result, various nanostructures displaying periodic linear patterns at a single molecule level were obtained. Based on careful measurements on the STM images in combination with density functional theory (DFT) calculations, it could be found that the vertical and parallel distances between neighboring oligomers were responsible for the specific arrangement of the backbone and side chains. The results showed that these molecular designs strongly affect their self-assembled structure, which is important to clarify the structure-property relationship in the nanoscience field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA