Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(49): 20172-20183, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38035760

RESUMO

H-Nb2O5 is a promising energy material, which can be typically obtained from any other polymorph after conducting high temperature calcination (∼1273 K). Recently, a low-temperature dehydration from Nb3O7(OH) was employed to prepare H-Nb2O5 at 723 K for 2 h, and yet the transformation mechanism has remained unclear in the literature. Here, the dehydration kinetic and phase transformation mechanism of the Nb3O7(OH) were investigated for the first time by experiments, density functional theory, and molecular dynamics calculations. After dehydration, the orthorhombic Nb3O7(OH) initially transformed into an intermediate Nb-O compound with dislocations, preserving parent structure, and subsequently transformed into monoclinic H-Nb2O5. The activation energy for the transformation from Nb3O7(OH) to H-Nb2O5 was as low as 1.35 eV, compared to that of T-Nb2O5 to H-Nb2O5 (3.60 eV). Furthermore, the defect-rich H-Nb2O5 obtained from Nb3O7(OH), does not exhibit pristine bound exciton state due to severe recombination of photogenerated carriers, resulting in poor photocatalytic activity.

2.
ACS Appl Mater Interfaces ; 16(19): 24453-24463, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687388

RESUMO

Despite the excellent performance of Nb3O7(OH) in dye-sensitized solar cells and catalysis, its charge separation, transport, and structural properties remain poorly understood. Herein, the Nb3O7(OH) nanorods were prepared, and their structural characteristics, optoelectronic properties, and carrier mobility were also analyzed and investigated through a series of complex characterizations. Theoretical prediction suggested that the exciton binding energy of Nb3O7(OH) could be as high as 100.49 meV. The temperature-dependent photoluminescence (PL) of Nb3O7(OH) nanorods revealed two activation energies, and a higher proportion of long-lived components observed in the photoluminescence decay indicated effective electron trapping. That is, two energy states were present, hindering photogenerated charge recombination and promoting photocatalytic action. Current-voltage characteristics of the Nb3O7(OH) nanorod film were analyzed, revealing an ultrahigh carrier mobility of ∼310 cm2/V·s, ensuring fast and efficient electron transfer. Furthermore, Nb3O7(OH) nanorods were employed to reduce CO2, resulting in the effective production of CO and CH4. Overall, considering the presence of hydroxyl pairs on the surface of Nb3O7(OH), which facilitate the formation of the frustrated Lewis acid-base pairs and the activation of CO2, together with its effective electron trapping and charge transport, give Nb3O7(OH) nanorods a promising potential for CO2 reduction.

3.
Innovation (Camb) ; 3(4): 100269, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35815072

RESUMO

Fusion energy is a promising source of clean energy, which could solve energy shortages and environmental pollution. Research into controlled fusion energy has been ongoing for over half a century. China has created a clear roadmap for magnetic confinement fusion development, where superconducting tokamaks will be used in commercial fusion reactors. The Experimental Advanced Superconducting Tokamak (EAST) is the world's first fully superconducting tokamak with upper and lower divertors, which aims at long-pulse, steady-state, H-mode operation, and 101-s H-mode discharge had been achieved. In 2007, China joined the International Thermonuclear Experimental Reactor (ITER) and became one of its seven members. Thirteen procurement packages are undertaken by China, covering superconducting magnets, power supplies, plasma-facing components (PFCs), diagnostics, etc. To bridge the gap between the ITER and fusion demonstration power plants (DEMOs), China is planning to build the Chinese Fusion Engineering Testing Reactor (CFETR) to demonstrate related technologies and physics models. The engineering design of the CFETR was completed in 2020, and Comprehensive Research Facilities for Fusion Technology (CRAFT) are being constructed to explore the key technologies used in the CFETR.

4.
Rev Sci Instrum ; 92(4): 043539, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243464

RESUMO

The supersonic molecular beam injection (SMBI) technique is widely used in magnetic fusion devices for plasma fueling and active control of particles. The beam flow formed by the SMBI system is directly visualized by a newly established schlieren diagnostic system on the SMBI testing platform. This schlieren system could provide a 2D density distribution of the beam with the sub-mm spatial resolution by detecting the change in the refractive index of the medium caused by the SMBI in the low-pressure vacuum chamber. The structure and the divergence angle of the supersonic molecular beam for fusion plasma fueling are first measured. Additionally, the density profile of the supersonic molecular beam is reconstructed from the measured light intensity by the schlieren system. The experimental comparison between the standard nozzle and the optimized nozzle of the SMBI system shows the great potential of the diagnostic system in optimizing the beam characteristics.

5.
Rev Sci Instrum ; 88(11): 113504, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195413

RESUMO

The stability and performance of tokamak plasmas are routinely limited by various magneto-hydrodynamic instabilities, such as neoclassical tearing modes (NTMs). This paper presents a rather simple method to control the NTMs in real time (RT) on a tokamak, including the control principle of a feedback approach for RT suppression and stabilization for the NTMs. The control system combines Mirnov, electron cyclotron emission, and soft X-ray diagnostics used for determining the NTM positions. A methodology for fast detection of 2/1 or 3/2 NTM positions with 129 × 129 grid reconstruction is elucidated. The forty poloidal angles for steering the electron cyclotron resonance heating (ECRH)/electron cyclotron current drive launcher are used to establish the alignment of antenna mirrors with the center of the NTM and to ensure launcher emission intersecting with the rational surface of a magnetic island. Pilot experiments demonstrate the RT control capability to trace the conventional tearing modes (CTMs) in the HL-2A tokamak. The 2/1 CTMs have been suppressed or stabilized by the ECRH power deposition on site or with the steerable launcher.

6.
Rev Sci Instrum ; 87(11): 113501, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910662

RESUMO

A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ∼ 1-2, k⊥ ∼ 2-9 cm-1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.

7.
Rev Sci Instrum ; 85(5): 053511, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880373

RESUMO

A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ~20 nm in depth and ~500 µm or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

8.
Rev Sci Instrum ; 85(11): 11E426, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430333

RESUMO

A space-resolved grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been developed in the HL-2A tokamak to measure vertical impurity emission profiles with simultaneous spectral, temporal, and spatial resolution. The spectrometer working in the wavelength range of 30-500 Å has been equipped with a gold-coated varied-line-spacing holographic grating with curvature of 5606 mm and a back illuminated charge-coupled device with size of 6.6 × 26.6 mm(2) (255 × 1024 pixels). A lower half of the HL-2A plasma with averaged minor radius of 40 cm is observed when the spectrometer with horizontal dispersion is placed at a distance of 7.5 m away from the plasma center. An excellent spatial resolution of 12 mm is achieved when a space-resolved slit with vertical width of 0.5 mm is adopted. The radial profiles of intrinsic impurities in several ionization stages have been measured with high throughput and extremely low stray light.

9.
Rev Sci Instrum ; 83(10): 10D507, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126850

RESUMO

A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 Å-500 Å. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z(eff). The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 Å-500 Å by comparing the intensity between VUV and EUV line emissions.

10.
Rev Sci Instrum ; 81(4): 043503, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441337

RESUMO

A 1 m normal incidence vacuum ultraviolet (VUV) spectrometer has been developed for spatial distribution measurement of edge impurity line emission in the wavelength range of 300-3200 A on HL-2A tokamak. A vertical profile of the impurity line emission is measured with a space-resolved slit placed between an entrance slit and a grating of the spectrometer. Two concave 1200 grooves/mm gratings blazed at 800 and 1500 A are set on a rotatable holder in the spectrometer, which gives wavelength dispersion of 0.12 mm/A. A back-illuminated charge-coupled device is used as a detector with an image size of 6.7 x 26.6 mm(2) (26 x 26 microm(2)/pixel). An excellent spatial resolution of 2 mm is obtained with good spectral resolution of 0.15 A when the space-resolved slit of 50 microm in width is used. The space-resolved spectra thus provide three radial profiles of emission line intensity, ion temperature, and poloidal rotation. The electron temperature can be measured by the intensity ratio, e.g., CIII 2s(2)-2s3p (386 A)/2s(2)-2s2p (977 A). The sensitivity of the spectrometer is calibrated in situ by using the VUV bremsstrahlung continuum radiation emitted from the tokamak plasma. A good performance of the spectrometer system for the edge impurity and temperature profile measurements is presented with results on Ohmic and H-mode discharges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA