RESUMO
signatureSearch is an R/Bioconductor package that integrates a suite of existing and novel algorithms into an analysis environment for gene expression signature (GES) searching combined with functional enrichment analysis (FEA) and visualization methods to facilitate the interpretation of the search results. In a typical GES search (GESS), a query GES is searched against a database of GESs obtained from large numbers of measurements, such as different genetic backgrounds, disease states and drug perturbations. Database matches sharing correlated signatures with the query indicate related cellular responses frequently governed by connected mechanisms, such as drugs mimicking the expression responses of a disease. To identify which processes are predominantly modulated in the GESS results, we developed specialized FEA methods combined with drug-target network visualization tools. The provided analysis tools are useful for studying the effects of genetic, chemical and environmental perturbations on biological systems, as well as searching single cell GES databases to identify novel network connections or cell types. The signatureSearch software is unique in that it provides access to an integrated environment for GESS/FEA routines that includes several novel search and enrichment methods, efficient data structures, and access to pre-built GES databases, and allowing users to work with custom databases.
Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise por Conglomerados , Histona Desacetilases/metabolismo , Preparações Farmacêuticas , Software , Fatores de TempoRESUMO
In this study, the amplifiable DNA from refined vegetable oils was isolated by using commercial DNA extraction kits based on the CTAB method in combination with nucleic acid enrichment, and then the presence of genetically modified (GM) soybean and maize DNA in the oils was traced by PCR. The results showed that the duration and intensity of heating had no significant effect on the DNA stability and concentration in oils for a short period, suggesting that DNA in oils could be stably reserved for a certain time, thus making it possible to trace down refined vegetable oils reliably and effectively. The results provided a set of primers suitable for systematic GM oil detection. More importantly, this study made an important contribution to the economical and reliable detection of GM vegetable oils regarding food authenticity issues.
RESUMO
Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.