Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(1): 498-505, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33325478

RESUMO

Using electric fields to control crystallization processes shows a strong potential for improving pharmaceuticals, but these field effects are not yet fully explored nor understood. This study investigates how the application of alternating high electric fields can influence the crystallization kinetics as well as the final crystal product, with a focus on the possible difference between alternating (ac) and static (dc) type fields applied to vinyl ethylene carbonate (VEC), a molecular system with field-induced polymorphism. Relative to ac fields, static electric fields lead to more severe accumulation of impurity ions near the electrodes, possibly affecting the crystallization behavior. By tuning the amplitude and frequency of the electric field, the crystallization rate can be modified, and the crystallization outcome can be guided to form one or the other polymorph with high purity, analogous to the findings derived from dc field experiments. Additionally, it is found that low-frequency ac fields reduce the induction time, promote nucleation near Tg, and affect crystallization rates as in the dc case. Consistency is also observed for the Avrami parameters n derived from ac and dc field experiments. Therefore, it appears safe to conclude that ac fields can replicate the effects seen using dc fields, which is advantageous for samples with mobile charges and the resulting conductivity.

2.
J Phys Chem Lett ; 11(10): 3975-3979, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32352784

RESUMO

The ability to control crystallization is of central importance to many technologies and pharmaceutical materials. Electric fields have been shown to impact crystallization, but little is known about the mechanism of such effects. Here we report on our observations of how the frequency of an external electric (ac) field changes the crystallization rate and the partitioning into distinct polymorphs of vinylethylene carbonate. We find that the field effects are pronounced only for frequencies below a certain threshold, which is orders of magnitude below that characterizing molecular orientation but consistent with the reorientation of polar crystal nuclei of radius r < 3 nm. We conclude that the electric field opens an additional nucleation pathway by lowering the free-energy barrier to form a polymorph that melts at a temperature ∼20 K below that of the ordinary crystal. This lower melting polymorph is not obtained at zero electrical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA