Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Chem Inf Model ; 63(13): 4138-4146, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329322

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infected over 688 million people worldwide, causing public health concern and approximately 6.8 million deaths due to COVID-19. COVID-19, especially severe cases, is characterized by exacerbated lung inflammation with an increase of pro-inflammatory cytokines. In addition to antiviral drugs, there is a need for anti-inflammatory therapies to treat all phases of COVID-19. One of the most attractive drug targets for COVID-19 is the SARS-CoV-2 main protease (MPro), an enzyme responsible for cleaving polyproteins formed after the translation of viral RNA, which is essential for viral replication. MPro inhibitors, therefore, have the potential to stop viral replication and act as antiviral drugs. Considering that several kinase inhibitors are known for their action in inflammatory pathways, this could also be investigated toward a potential anti-inflammatory treatment for COVID-19. Therefore, the use of kinase inhibitors against SARS-CoV-2 MPro may be a promising strategy to find molecules with dual activity─antiviral and anti-inflammatory. Considering this, the potential of six kinase inhibitors against SARS-CoV-2 MPro were evaluated in silico and in vitro, including Baricitinib, Tofacitinib, Ruxolitinib, BIRB-796, Skepinone-L, and Sorafenib. To assess the inhibitory potential of the kinase inhibitors, a continuous fluorescent-based enzyme activity assay was optimized with SARS-CoV-2 MPro and MCA-AVLQSGFR-K(Dnp)-K-NH2 (substrate). BIRB-796 and Baricitinib were identified as inhibitors of SARS-CoV-2 MPro, presenting IC50 values of 7.99 and 25.31 µM, respectively. As they are also known for their anti-inflammatory action, both are prototype compounds with the potential to present antiviral and anti-inflammatory activity against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Anti-Inflamatórios/farmacologia , Simulação de Acoplamento Molecular
2.
J Enzyme Inhib Med Chem ; 36(1): 847-855, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33752554

RESUMO

The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.


Assuntos
Aldeído Liases/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Guanosina/análogos & derivados , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Tionucleosídeos/farmacologia , Aldeído Liases/genética , Aldeído Liases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanosina/síntese química , Guanosina/química , Guanosina/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Tionucleosídeos/síntese química , Tionucleosídeos/química
3.
Nutrition ; 103-104: 111772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35930916

RESUMO

Gastrointestinal tract diseases are characterized by an imbalance in physiological functions, which may involve inflammatory and metabolic pathways and trigger chronic, multifactorial, and idiopathic inflammatory disorders. The association of probiotics with prebiotics has the potential to remedy these afflictive conditions, because they attenuate or even block the adhesion of pathogenic microorganisms in the enteric environment. This article highlights the importance of using probiotics associated with fibers from Psyllium as prebiotics to maintain a healthy intestinal microbiota. We also present the technologies and encapsulating materials involved in coating to increase the survival rate of these strains when exposed to the gastrointestinal tract. The importance of products containing probiotics and fibers from Psyllium as prebiotics becomes increasingly evident when there is a health bias. Emerging health challenges and advances in research will drive selective approaches in biotechnology to discover and evaluate new probiotics and prebiotics that can potentially contribute to human health.


Assuntos
Microbioma Gastrointestinal , Probióticos , Psyllium , Humanos , Prebióticos , Probióticos/farmacologia , Trato Gastrointestinal/metabolismo
4.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923030

RESUMO

The p38δ mitogen-activated protein kinase is an important signal transduction enzyme. p38δ has recently emerged as a drug target due to its tissue-specific expression patterns and its critical roles in regulation of cellular processes related to cancer and inflammatory diseases, such as cell proliferation, cell migration, apoptosis, and inflammatory responses. However, potent and specific p38δ inhibitors have not been defined so far. Moreover, in cancer disease, p38δ appears to act as a tumor suppressor or tumor promoter according to cancer and cell type studied. In this review, we outline the current understanding of p38δ roles in each cancer type, to define whether it is possible to delineate new cancer therapies based on small-molecule p38δ inhibitors. We also highlight recent advances made in the design of molecules with potential to inhibit p38 isoforms and discuss structural approaches to guide the search for p38δ inhibitors.

5.
Sci Rep ; 11(1): 11998, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099808

RESUMO

Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.


Assuntos
COVID-19/genética , Mutação/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Brasil , Genoma Viral , Genômica , Humanos , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença
6.
Microbiol Spectr ; 9(3): e0000921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937164

RESUMO

The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The aroA-encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate aroA gene essentiality and vulnerability of its protein product, EPSPS, from Mycolicibacterium (Mycobacterium) smegmatis (MsEPSPS). We demonstrate that aroA-deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for aroA-knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected MsEPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies (Kcat/Km) of recombinant wild-type (WT) and mutated versions of MsEPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, aroA from M. smegmatis is essential, its essentiality is dependent on MsEPSPS activity, and MsEPSPS is vulnerable. IMPORTANCE We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme inside cells was performed by disrupting or silencing the EPSPS-encoding aroA gene. Finally, we evaluated the essentiality of specific residues from EPSPS that are important for its catalytic activity, determined with experiments of enzyme kinetics using recombinant EPSPS mutants.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/enzimologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Alinhamento de Sequência
7.
J Struct Biol ; 169(3): 379-88, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19932753

RESUMO

In humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.75 A. Molecular dynamics simulations were employed to assess the structural features of HsPNP in both free form and in complex with 7DG. Our results show that some regions, responsible for entrance and exit of substrate, present a conformational variability, which is dissected by dynamics simulation analysis. Enzymatic assays were also carried out and revealed that 7-deazaguanine presents a lower inhibitory activity against HsPNP (K(i)=200 microM). The present structure may be employed in both structure-based design of PNP inhibitors and in development of specific empirical scoring functions.


Assuntos
Guanina/análogos & derivados , Simulação de Dinâmica Molecular , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Difração de Raios X/métodos , Guanina/química , Guanina/metabolismo , Humanos , Estrutura Molecular , Análise de Componente Principal , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência
8.
Arch Biochem Biophys ; 479(1): 28-38, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18790691

RESUMO

Human purine nucleoside phosphorylase (HsPNP) is a target for inhibitor development aiming at T-cell immune response modulation. In this work, we report the development of a new set of empirical scoring functions and its application to evaluate binding affinities and docking results. To test these new functions, we solved the structure of HsPNP and 2-mercapto-4(3H)-quinazolinone (HsPNP:MQU) binary complex at 2.7A resolution using synchrotron radiation, and used these functions to predict ligand position obtained in docking simulations. We also employed molecular dynamics simulations to analyze HsPNP in two conditions, as apoenzyme and in the binary complex form, in order to assess the structural features responsible for stability. Analysis of the structural differences between systems provides explanation for inhibitor binding. The use of these scoring functions to evaluate binding affinities and molecular docking results may be used to guide future efforts on virtual screening focused on HsPNP.


Assuntos
Apoenzimas/química , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Quinazolinonas/metabolismo , Sítios de Ligação , Simulação por Computador , Estabilidade Enzimática , Humanos , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Purina-Núcleosídeo Fosforilase/genética , Quinazolinonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Síncrotrons , Titulometria , Difração de Raios X
9.
J Chromatogr A ; 1338: 77-84, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24630982

RESUMO

The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed.


Assuntos
Cromatografia de Afinidade/métodos , Purina-Núcleosídeo Fosforilase/química , Enzimas Imobilizadas/química , Humanos , Cinética , Espectrometria de Massas , Microscopia Eletrônica de Varredura
10.
Bone ; 52(1): 167-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23026564

RESUMO

Purine nucleoside phosphorylase (PNP) is a purine-metabolizing enzyme that catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to their respective bases and (deoxy)ribose-1-phosphate. It is a key enzyme in the purine salvage pathway of mammalian cells. The present investigation sought to determine whether the PNP transition state analog inhibitor (Immucillin-H) arrests bone loss in two models of induced periodontal disease in rats. Periodontal disease was induced in rats using ligature or LPS injection followed by administration of Immucillin-H for direct analysis of bone loss, histology and TRAP staining. In vitro osteoclast differentiation and activation of T CD4+ cells in the presence of Immucillin-H were carried out for assessment of RANKL expression, PNP and Cathepsin K activity. Immucillin-H inhibited bone loss induced by ligatures and LPS, leading to a reduced number of infiltrating osteoclasts and inflammatory cells. In vitro assays revealed that Immucillin-H could not directly abrogate differentiation of osteoclast precursor cells, but affected lymphocyte-mediated osteoclastogenesis. On the other hand, incubation of pre-activated T CD4+ with Immucillin-H decreased RANKL secretion with no compromise of cell viability. The PNP transition state analog Immucillin-H arrests bone loss mediated by T CD4+ cells with no direct effect on osteoclasts. PNP inhibitor may have an impact in the treatment of diseases characterized by the presence of pathogens and imbalances of bone metabolism.


Assuntos
Inibidores Enzimáticos/farmacologia , Doenças Periodontais/prevenção & controle , Nucleosídeos de Purina/farmacologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cocultura , Ativação Linfocitária , Camundongos , Purina-Núcleosídeo Fosforilase/metabolismo , Ratos , Ratos Wistar
11.
PLoS One ; 8(2): e56445, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424660

RESUMO

Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5'-monophosphate (UMP) and pyrophosphate (PP(i)). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PP(i) product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis.


Assuntos
Mycobacterium tuberculosis/enzimologia , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência , Especificidade por Substrato
12.
J Mol Model ; 18(2): 467-79, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21541749

RESUMO

Cytidine Deaminase (CD) is an evolutionarily conserved enzyme that participates in the pyrimidine salvage pathway recycling cytidine and deoxycytidine into uridine and deoxyuridine, respectively. Here, our goal is to apply computational techniques in the pursuit of potential inhibitors of Mycobacterium tuberculosis CD (MtCDA) enzyme activity. Molecular docking simulation was applied to find the possible hit compounds. Molecular dynamics simulations were also carried out to investigate the physically relevant motions involved in the protein-ligand recognition process, aiming at providing estimates for free energy of binding. The proposed approach was capable of identifying a potential inhibitor, which was experimentally confirmed by IC(50) evaluation. Our findings open up the possibility to extend this protocol to different databases in order to find new potential inhibitors for promising targets based on a rational drug design process.


Assuntos
Citidina Desaminase/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Citidina Desaminase/metabolismo , Estabilidade Enzimática , Humanos , Concentração Inibidora 50 , Ligantes , Ligação Proteica , Estrutura Quaternária de Proteína
13.
J Chromatogr A ; 1232: 110-5, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22099222

RESUMO

The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The K(M) value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 ± 29.2 µM and 133 ± 14.9 µM, respectively). A new fourth-generation immucillin derivative (DI4G; IC(50)=40.6 ± 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay.


Assuntos
Reatores Biológicos , Descoberta de Drogas/métodos , Enzimas Imobilizadas/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Cromatografia Líquida , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Desenho de Equipamento , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Hipoxantina/análise , Hipoxantina/metabolismo , Inosina/metabolismo , Cinética , Ligantes , Modelos Lineares , Modelos Químicos , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Purina-Núcleosídeo Fosforilase/química , Análise de Regressão , Reprodutibilidade dos Testes
14.
Mol Biosyst ; 7(1): 119-28, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978656

RESUMO

The number of new cases of tuberculosis (TB) arising each year is increasing globally. Migration, socio-economic deprivation, HIV co-infection and the emergence of drug-resistant strains of Mycobacterium tuberculosis, the main causative agent of TB in humans, have all contributed to the increasing number of TB cases worldwide. Proteins that are essential to the pathogen survival and absent in the host, such as enzymes of the shikimate pathway, are attractive targets to the development of new anti-TB drugs. Here we describe the metal requirement and kinetic mechanism determination of M. tuberculosis dehydroquinate synthase (MtDHQS). True steady-state kinetic parameters determination and ligand binding data suggested that the MtDHQS-catalyzed chemical reaction follows a rapid-equilibrium random mechanism. Treatment with EDTA abolished completely the activity of MtDHQS, and addition of Co(2+) and Zn(2+) led to, respectively, full and partial recovery of the enzyme activity. Excess Zn(2+) inhibited the MtDHQS activity, and isotitration microcalorimetry data revealed two sequential binding sites, which is consistent with the existence of a secondary inhibitory site. We also report measurements of metal concentrations by inductively coupled plasma atomic emission spectrometry. The constants of the cyclic reduction and oxidation of NAD(+) and NADH, respectively, during the reaction of MtDHQS was monitored by a stopped-flow instrument, under single-turnover experimental conditions. These results provide a better understanding of the mode of action of MtDHQS that should be useful to guide the rational (function-based) design of inhibitors of this enzyme that can be further evaluated as anti-TB drugs.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Mycobacterium tuberculosis/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Zinco/metabolismo , Calorimetria , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Mol Biosyst ; 7(4): 1289-305, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21298178

RESUMO

Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.


Assuntos
Escherichia coli/enzimologia , GMP Redutase , Ligantes , Proteínas Recombinantes , Termodinâmica , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Escherichia coli/genética , GMP Redutase/química , GMP Redutase/genética , GMP Redutase/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
16.
Enzyme Res ; 2011: 642758, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603269

RESUMO

Malaria continues to be a major cause of children's morbidity and mortality worldwide, causing nearly one million deaths annually. The human malaria parasite, Plasmodium falciparum, synthesizes fatty acids employing the Type II fatty acid biosynthesis system (FAS II), unlike humans that rely on the Type I (FAS I) pathway. The FAS II system elongates acyl fatty acid precursors of the cell membrane in Plasmodium. Enoyl reductase (ENR) enzyme is a member of the FAS II system. Here we present steady-state kinetics, pre-steady-state kinetics, and equilibrium fluorescence spectroscopy data that allowed proposal of P. falciparum ENR (PfENR) enzyme mechanism. Moreover, building on previous results, the present study also evaluates the PfENR inhibition by the pentacyano(isoniazid)ferrateII compound. This inorganic complex represents a new class of lead compounds for the development of antimalarial agents focused on the inhibition of PfENR.

17.
Mem Inst Oswaldo Cruz ; 101(7): 697-714, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17160276

RESUMO

Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis , Tuberculose Pulmonar , Vacina BCG , Saúde Global , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Organização Mundial da Saúde
18.
Mem. Inst. Oswaldo Cruz ; 101(7): 697-714, Nov. 2006. ilus, graf
Artigo em Inglês | LILACS | ID: lil-439452

RESUMO

Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95 percent of new cases and 98 percent of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular...


Assuntos
Humanos , História Medieval , História do Século XX , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis , Tuberculose Pulmonar , Vacina BCG , Saúde Global , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA