Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(35): 21125-21131, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817493

RESUMO

Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ94Zr) and high-spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon-melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.

2.
Geophys Res Lett ; 49(12): e2022GL098756, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35865913

RESUMO

The mechanisms driving crustal deformation and uplift of orogenic plateaus are fundamental to continental tectonics. Large-scale crustal flow has been hypothesized to occur in eastern Tibet, but it remains controversial due to a lack of geologic evidence. Geochemical and isotopic data from Cenozoic igneous rocks in the eastern Tibet-Gongga-Zheduo intrusive massif, provide a way to test this model. Modeling results suggest that Cenozoic magmas originated at depths of ∼30-40 km, the depth that crustal flow has been postulated to occur at. Detailed isotopic analyses indicate that the igneous rocks are derived from partial melting of the local Songpan-Ganzi crust, arguing against a long-distance crustal flow. Episodic magmatism during the Cenozoic showing a repeated shifting of magmatic sources can be correlated with crustal uplift. The continued indentation of the Indian Block and upwelling of the asthenosphere contribute to the crustal deformation, magmatism, and uplift.

3.
Geobiology ; 18(3): 366-393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944551

RESUMO

Ferruginous stromatolites occur associated with Middle Jurassic condensed deposits in several Tethyan and peri-Tethyan areas. The studied ferruginous stromatolites occurring in the Middle Jurassic condensed deposits of Southern Carpathians (Romania) preserve morphological, geochemical, and mineralogical data that suggest microbial iron oxidation. Based on their macrofabrics and accretion patterns, we classified stromatolites: (1) Ferruginous microstromatolites associated with hardground surfaces and forming the cortex of the macro-oncoids and (2) Domical ferruginous stromatolites developed within the Ammonitico Rosso-type succession disposed above the ferruginous microstromatolites (type 1). Petrographic and scanning electron microscope (SEM) examinations reveal that different types of filamentous micro-organisms were the significant framework builders of the ferruginous stromatolitic laminae. The studied stromatolites yield a large range of δ56 Fe values, from -0.75‰ to +0.66‰ with predominantly positive values indicating the prevalence of partial ferrous iron oxidation. The lowest negative δ56 Fe values (up to -0.75‰) are present only in domical ferruginous stromatolites samples and point to initial iron mobilization where the Fe(II) was produced by dissimilatory Fe(III) reduction of ferric oxides by Fe(III)-reducing bacteria. Rare-earth elements and yttrium (REE + Y) are used to decipher the nature of the seawater during the formation of the ferruginous stromatolites. Cerium anomalies display moderate to small negative values for the ferruginous microstromatolites, indicating weakly oxygenated conditions compatible with slowly reducing environments, in contrast to the domical ferruginous stromatolites that show moderate positive Ce anomalies suggesting that they formed in deeper, anoxic-suboxic waters. The positive Eu anomalies from the studied samples suggest a diffuse hydrothermal input on the seawater during the Middle Jurassic on the sites of ferruginous stromatolite accretion. This study presents the first interpretation of REE + Y in the Middle Jurassic ferruginous stromatolites of Southern Carpathians, Romania.


Assuntos
Ferro/química , Compostos Férricos , Oxirredução , Romênia , Água do Mar
4.
Nat Commun ; 9(1): 969, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511197

RESUMO

Climate and tectonics have complex feedback systems which are difficult to resolve and remain controversial. Here we propose a new climate-independent approach to constrain regional Andean surface uplift. 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary frontal-arc lavas from the Andean Plateau are distinctly crustal (>0.705 and <0.5125, respectively) compared to non-plateau arc lavas, which we identify as a plateau discriminant. Strong linear correlations exist between smoothed elevation and 87Sr/86Sr (R2 = 0.858, n = 17) and 143Nd/144Nd (R2 = 0.919, n = 16) ratios of non-plateau arc lavas. These relationships are used to constrain 200 Myr of surface uplift history for the Western Cordillera (present elevation 4200 ± 516 m). Between 16 and 26°S, Miocene to recent arc lavas have comparable isotopic signatures, which we infer indicates that current elevations were attained in the Western Cordillera from 23 Ma. From 23-10 Ma, surface uplift gradually propagated southwards by ~400 km.

5.
Sci Rep ; 7(1): 7058, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765580

RESUMO

We present compiled geochemical data of young (mostly Pliocene-present) intermediate magmatic rocks from continental collisional belts and correlations between their whole-rock Sr/Y and La/Yb ratios and modern crustal thickness. These correlations, which are similar to those obtained from subduction-related magmatic arcs, confirm that geochemistry can be used to track changes of crustal thickness changes in ancient collisional belts. Using these results, we investigate temporal variations of crustal thickness in the Qinling Orogenic Belt in mainland China. Our results suggest that crustal thickness remained constant in the North Qinling Belt (~45-55 km) during the Triassic to Jurassic but fluctuates in the South Qinling Belt, corresponding to independently determined tectonic changes. In the South Qinling Belt, crustal thickening began at ~240 Ma and culminated with 60-70-km-thick crust at ~215 Ma. Then crustal thickness decreased to ~45 km at ~200 Ma and remained the same to the present. We propose that coupled use of Sr/Y and La/Yb is a feasible method for reconstructing crustal thickness through time in continental collisional belts. The combination of the empirical relationship in this study with that from subduction-related arcs can provide the crustal thickness evolution of an orogen from oceanic subduction to continental collision.

6.
Sci Rep ; 7(1): 9047, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831089

RESUMO

The role of magmatic processes as a significant mechanism for the generation of voluminous silicic crust and the development of Cordilleran plateaus remains a lingering question in part because of the inherent difficulty in quantifying plutonic volumes. Despite this difficulty, a growing body of independently measured plutonic-to-volcanic ratios suggests the volume of plutonic material in the crust related to Cordilleran magmatic systems is much larger than is previously expected. To better examine the role of crustal magmatic processes and its relationship to erupted material in Cordilleran systems, we present a continuous high-resolution crustal seismic velocity model for an ~800 km section of the active South American Cordillera (Puna Plateau). Although the plutonic-to-volcanic ratios we estimate vary along the length of the Puna Plateau, all ratios are larger than those previously reported (~30:1 compared to 5:1) implying that a significant volume of intermediate to silicic plutonic material is generated in the crust of the central South American Cordillera. Furthermore, as Cordilleran-type margins have been common since the onset of modern plate tectonics, our findings suggest that similar processes may have played a significant role in generating and/or modifying large volumes of continental crust, as observed in the continents today.

8.
Sci Rep ; 5: 17786, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633804

RESUMO

We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA