Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 13): 2873-84, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24806962

RESUMO

The mechanisms underlying the cell response to mechanical forces are crucial for muscle development and functionality. We aim to determine whether mutations of the LMNA gene (which encodes lamin A/C) causing congenital muscular dystrophy impair the ability of muscle precursors to sense tissue stiffness and to respond to mechanical challenge. We found that LMNA-mutated myoblasts embedded in soft matrix did not align along the gel axis, whereas control myoblasts did. LMNA-mutated myoblasts were unable to tune their cytoskeletal tension to the tissue stiffness as attested by inappropriate cell-matrix adhesion sites and cytoskeletal tension in soft versus rigid substrates or after mechanical challenge. Importantly, in soft two-dimensional (2D) and/or static three-dimensional (3D) conditions, LMNA-mutated myoblasts showed enhanced activation of the yes-associated protein (YAP) signaling pathway that was paradoxically reduced after cyclic stretch. siRNA-mediated downregulation of YAP reduced adhesion and actin stress fibers in LMNA myoblasts. This is the first demonstration that human myoblasts with LMNA mutations have mechanosensing defects through a YAP-dependent pathway. In addition, our data emphasize the crucial role of biophysical attributes of cellular microenvironment to the response of mechanosensing pathways in LMNA-mutated myoblasts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lamina Tipo A/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Microambiente Celular/fisiologia , Humanos , Lamina Tipo A/genética , Microscopia Confocal , Mutação , Fosfoproteínas/genética , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA