Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(10): 103401, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339263

RESUMO

The electronic stopping cross sections (SCS) of Ta and Gd for slow protons have been investigated experimentally. The data are compared to the results for Pt and Au to learn how electronic stopping in transition and rare earth metals correlates with features of the electronic band structures. The extraordinarily high SCS observed for protons in Ta and Gd cannot be understood in terms of a free electron gas model, but are related to the high densities of both occupied and unoccupied electronic states in these metals.

2.
Anal Bioanal Chem ; 405(22): 7119-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23404132

RESUMO

Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

3.
Anal Bioanal Chem ; 405(22): 7133-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23831753

RESUMO

In this work, a novel evaluation strategy for the X-ray photoelectron spectroscopy (XPS) chemical assessment is proposed to identify the corrosion products formed on the surface of hot-dip galvanized ZnMgAl coatings after exposure to standardized salt spray tests. The experiments demonstrate that the investigated system exhibits a problematic differential charging behavior between the different compounds, an effect which cannot be fully compensated for by the flood gun of the XPS system, making a reliable evaluation of the individual spectra impossible by using standard evaluation and fitting methods. For that reason, a new effective approach--taking the different charge shifts into account--was implemented and its reliability experimentally verified on model mixtures of assumed corrosion products with known composition. With this new approach, the chemical surface composition of an industrial sample of a corroded ZnMgAl coating was revealed and discussed in order to clearly demonstrate the potential of the proposed method for future corrosion studies.

4.
Anal Bioanal Chem ; 403(3): 651-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22086398

RESUMO

In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed.

5.
Anal Bioanal Chem ; 403(3): 663-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362274

RESUMO

Zn-Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn-Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating-steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA