Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453904

RESUMO

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Assuntos
Chlorella , Microalgas , Manganês/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metais/metabolismo
2.
Arch Biochem Biophys ; 743: 109660, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263463

RESUMO

The mode of action toward gastric cancer cells of brominated Coelenteramine, an analogue of a metabolic product of a marine bioluminescent reaction, was investigated by synchrotron radiation-based Fourier Transform Infrared spectrocopy (FTIR). This method revealed that the anticancer activity of brominated Coelenteramine is closely connected with cellular lipids, by affecting their organization and composition. More specifically, there is an increasing extent of oxidative stress, which results in changes in membrane polarity, lipid chain packing and lipid composition. However, this effect was not observed in a noncancer cell line, helping to explain its selectivity profile. Thus, synchrotron radiation-based FTIR helped to identify the potential of this Coelenteramine analogue in targeting membrane lipids, while proving to be a powerful technique to probe the mechanism of anticancer drugs.


Assuntos
Neoplasias , Síncrotrons , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estresse Oxidativo , Lipídeos
3.
Anal Chem ; 94(4): 1932-1940, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965097

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by short median survival and an almost 100% tumor-related mortality. The standard of care treatment for newly diagnosed GBM includes surgical resection followed by concomitant radiochemotherapy. The prevention of disease progression fails due to the poor therapeutic effect caused by the great molecular heterogeneity of this tumor. Previously, we exploited synchrotron radiation-based soft X-ray tomography and hard X-ray fluorescence for elemental microimaging of the shock-frozen GBM cells. The present study focuses instead on the biochemical profiling of live GBM cells and provides new insight into tumor heterogenicity. We studied bio-macromolecular changes by exploring the live-cell synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy in a set of three GBM cell lines, including the patient-derived glioblastoma cell line, before and after riluzole treatment, a medicament with potential anticancer properties. SR-FTIR microspectroscopy shows that GBM live cells of different origins recruit different organic compounds. The riluzole treatment of all GBM cell lines mainly affected carbohydrate metabolism and the DNA structure. Lipid structures and protein secondary conformation are affected as well by the riluzole treatment: cellular proteins assumed cross ß-sheet conformation while parallel ß-sheet conformation was less represented for all GBM cells. Moreover, we hope that a new live-cell approach for GBM simultaneous treatment and examination can be devised to target cancer cells more specifically, i.e., future therapies can develop more specific treatments according to the specific bio-macromolecular signature of each tumor type.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Riluzol/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons
4.
Biochem J ; 477(19): 3729-3741, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936286

RESUMO

Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.


Assuntos
Biomassa , Chlorella/crescimento & desenvolvimento , Cobre/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Microbiologia da Água , Chlorella/ultraestrutura , Ecossistema , Microalgas/ultraestrutura
5.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065666

RESUMO

Ultraviolet (UV) irradiation is an important risk factor in cataractogenesis. Lens epithelial cells (LECs), which are a highly metabolically active part of the lens, play an important role in UV-induced cataractogenesis. The purpose of this study was to characterize cell compounds such as nucleic acids, proteins, and lipids in human UV C-irradiated anterior lens capsules (LCs) with LECs, as well as to compare them with the control, non-irradiated LCs of patients without cataract, by using synchrotron radiation-based Fourier transform infrared (SR-FTIR) micro-spectroscopy. In order to understand the effect of the UV C on the LC bio-macromolecules in a context of cataractogenesis, we used the SR-FTIR micro-spectroscopy setup installed on the beamline MIRAS at the Spanish synchrotron light source ALBA, where measurements were set to achieve a single-cell resolution with high spectral stability and high photon flux. UV C irradiation of LCs resulted in a significant effect on protein conformation with protein formation of intramolecular parallel ß-sheet structure, lower phosphate and carboxyl bands in fatty acids and amino acids, and oxidative stress markers with significant increase of lipid peroxidation and diminishment of the asymmetric CH3 band.


Assuntos
Cápsula do Cristalino/química , Cápsula do Cristalino/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Raios Ultravioleta/efeitos adversos , Idoso , Carboidratos/química , Catarata/etiologia , Células Epiteliais/química , Células Epiteliais/efeitos da radiação , Ésteres/química , Humanos , Cápsula do Cristalino/diagnóstico por imagem , Peroxidação de Lipídeos/efeitos da radiação , Masculino , Ácidos Nucleicos/química , Estresse Oxidativo/efeitos da radiação , Conformação Proteica , Proteínas/química , Síncrotrons
6.
Anal Chem ; 91(2): 1460-1471, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30571081

RESUMO

Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is the most common adult onset neurodegenerative disorder affecting motor neurons. Disruptions in metal ion homeostasis have been described in association with ALS, but the pathological mechanisms are still poorly understood. One of the familial ALS cases is caused by mutations in the metallo-enzyme copper-zinc superoxide dismutase (SOD1). In this study, we employed orthogonal cellular synchrotron radiation based spectro-microscopies to investigate the astrocytes of an ALS animal model: the rat hSOD1 G93A that overexpresses human mutated SOD1, which is known to increase the susceptibility of the SOD1 protein to form insoluble intracellular aggregates. Specifically, we applied soft X-ray transmission tomography and hard X-ray fluorescence microscopy in situ, Fourier transform infrared spectro-microscopy to detect and analyze aggregates, as well as to determine the alterations in the cellular ultrastructure and the elemental and the organic composition of ALS model astrocytes with respect to the control astrocytes isolated from nontransgenic littermates (NTg). The present study demonstrates that large aggregates in the form of multivesicular inclusions form exclusively in the ALS model astrocytes and not in the NTg counterpart. Furthermore, the number of mitochondria, the cellular copper concentration, and the amount of antiparallel ß-sheet structures were significantly changed within the cells of the ALS model as well as the lipid localization and composition. Also, our data indicate that choline was decreased in the ALS model astrocytes, which could explain their higher sensitivity to oxidative stress that we observed. These results show that the hG93A SOD1 mutation causes metabolic and ultrastructural cellular changes and point to a link between an increased copper concentration and aggregation: the most probable that the aggregation of G93A hSOD1 may perturb its binding to Cu, thus directly or indirectly affecting Cu homeostasis.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Microscopia/instrumentação , Mutação , Superóxido Dismutase-1/genética , Síncrotrons , Esclerose Lateral Amiotrófica/genética , Animais , Humanos , Ratos
7.
Eur Biophys J ; 48(5): 475-484, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31243482

RESUMO

Pathological mechanisms in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, are still poorly understood. One subset of familial ALS cases is caused by mutations in the metallo-enzyme copper-zinc superoxide dismutase (SOD1), increasing the susceptibility of the SOD1 protein to form insoluble intracellular aggregates. Here, we employed synchrotron radiation-based Fourier transform infrared spectroscopy and microscopy to investigate brainstem cross-sections from the transgenic hSOD1 G93A rat model of ALS that overexpresses human-mutated SOD1. We compared the biomacromolecular organic composition in brainstem tissue cross-sections of ALS rats and their non-transgenic littermates (NTg). We demonstrate that the proteins and especially their antiparallel ß-sheet structure significantly differed in all three regions: the facial nucleus (FN), the gigantocellular reticular nucleus (GRN) and the trigeminal motor nucleus (TMN) in the brainstem tissue of ALS rats. The protein levels varied between different brainstem areas, with the highest concentration observed in the region of the FN in the brainstem tissue of NTg animals. Furthermore, the concentration of lipids and esters was significantly decreased in the TMN and FN of ALS animals. A similar pattern was detected for choline and phosphate assigned to nucleic acids with the highest concentrations in the FN of NTg animals. The spectroscopic analysis showed significant differences in phosphates, amide and lipid structure in the FN of NTg animals in comparison with the same area of ALS rats. These results show that the hG93A SOD1 mutation causes metabolic cellular changes and point to a link between bioorganic composition and hallmarks of protein aggregation.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Microscopia/instrumentação , Mutação , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase-1/genética , Síncrotrons , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Ratos
8.
Analyst ; 144(18): 5511-5520, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31393465

RESUMO

The outcome of radiotherapy can be further improved by combining radiotherapy with nanoparticles. Previous biological studies showed a significant amplification of the biological damage in cells charged with nanoparticles prior to radiotherapy treatments. The rationale has been based on the physical dose enhancement. However, this subject is still a matter of controversy and there are clear indications that biochemical effects may play a key role in the radiosensitization effects of nanoparticles. Within this context, the main goal of our study was to provide new insights into the radiosensitization effects of F98 glioma cells exposed to gadolinium nanoparticles combined with clinical megavoltage beams, and compare them with respect to kilovoltage radiotherapy (commonly used in combination with nanoparticles). For this purpose, we used synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) to provide relevant information on the treatment-induced biochemical changes of the main cell biomolecules. Biochemical differences were evaluated after the treatments to assess cellular damage. Multivariate analysis revealed nanoparticle-dependent changes in megavoltage treated cells. The main spectral variations were related to conformational changes in the protein secondary structures, which might be induced by radiation damage and by changes or rearrangements in the nucleic acid structures due to the initiation of DNA repair mechanisms. We also observed significant changes in the phosphate I and II bands, which concerns DNA damage, while few changes were detected in the lipid region. Spectroscopic data showed that these changes increased as a function of the dose. Finally, PCA analysis did not discriminate clearly between megavoltage and kilovoltage groups treated with nanoparticles, indicating that megavoltage radiosensitization effects might not differ significantly from those in kilovoltage radiotherapy.

9.
Analyst ; 142(2): 356-365, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27981320

RESUMO

The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.


Assuntos
Glioblastoma/patologia , Actinas/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/ultraestrutura , Humanos , Metais Pesados/metabolismo , Microscopia , Espectrometria por Raios X , Tomografia por Raios X
10.
Anal Bioanal Chem ; 407(24): 7487-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26253227

RESUMO

Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.


Assuntos
Phycomyces/fisiologia , Vanádio/química , Espectroscopia por Absorção de Raios X/métodos , Análise Espectral Raman
11.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25342533

RESUMO

The aim of this study was to investigate the feasibility of noninvasive monitoring of plaque burden in apolipoprotein E-deficient (ApoE-/-) mice by Gadospin F (GDF)-enhanced magnetic resonance imaging (MRI). Gadolinium uptake in plaques was controlled using transmission electron microscopy (TEM) and x-ray fluorescence (XRF) microscopy. To monitor the progression of atherosclerosis, ApoE-/- (n  =  5) and wild-type (n  =  2) mice were fed a Western diet and imaged at 5, 10, 15, and 20 weeks. Contrast-enhanced MRI was performed at 7 T Clinscan (Bruker, Ettlingen, Germany) before and 2 hours after intravenous injection of GDF (100 µmol/kg) to determine the blood clearance. Plaque size and contrast to noise ratio (CNR) were calculated for each time point using region of interest measurements to evaluate plaque progression. Following MRI, aortas were excised and GDF uptake was cross-validated by TEM and XRF microscopy. The best signal enhancement in aortic plaque was achieved 2 hours after application of GDF. No signal differences between pre- and postcontrast MRI were detectable in wild-type mice. We observed a gradual and considerable increase in plaque CNR and size for the different disease stages. TEM and XRF microscopy confirmed the localization of GDF within the plaque. GDF-enhanced MRI allows noninvasive and reliable estimation of plaque burden and monitoring of atherosclerotic progression in vivo.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/patologia , Meios de Contraste/administração & dosagem , Complexos de Coordenação/administração & dosagem , Gadolínio/administração & dosagem , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Radiografia
12.
ACS Omega ; 9(12): 13818-13830, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559983

RESUMO

Nanoparticle-based nanocarriers represent a viable alternative to conventional direct administration in cancer cells. This advanced approach employs the use of nanotechnology to transport therapeutic agents directly to cancer cells, thereby reducing the risk of damage to healthy cells and enhancing the efficacy of treatment. By approving nanoparticle-based nanocarriers, the potential for targeted, effective treatment is greatly increased. The so-called carbon-based nanoparticles, or carbon dots, have been hydrothermally prepared and initiated by a polymerization process. We synthesized and characterized nanoparticles of 2-acrylamido-2-methylpropanesulfonic acid, which showed biocompatibility with glioblastoma cells, and further, we tested them as a carrier for the drug riluzole. The obtained nanoparticles have been extensively characterized by techniques to obtain the exact composition of their surface by using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) spectroscopy, as well as cryo-transmission electron microscopy. We found that the surface of the synthesized nanoparticles (NPs) is covered mainly by sulfonated, carboxylic, and substituted amide groups. These functional groups make them suitable as carriers for drug delivery in cancer cells. Specifically, we have successfully utilized the NPs as a delivery system for the drug riluzole, which has shown efficacy in treating glioblastoma cancer cells. The effect of nanoparticles as carriers for the riluzole system on glioblastoma cells was studied using live-cell synchrotron-based FTIR microspectroscopy to monitor in situ biochemical changes. After applying nanoparticles as nanocarriers, we have observed changes in all biomacromolecules, including the nucleic acids and protein conformation. These findings provide a strong foundation for further exploration into the development of targeted treatments for glioblastoma.

13.
Pharmaceutics ; 16(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794333

RESUMO

The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal-organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-ß. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite's optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.

14.
J Neurochem ; 124(2): 250-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106162

RESUMO

Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe(2+) resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn(2+) , a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn(3+) treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Espectrometria por Raios X/métodos , Animais , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células
15.
J Synchrotron Radiat ; 20(Pt 2): 339-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23412492

RESUMO

Synchrotron-based X-ray microfluorescence (µSXRF) is an analytical method suitable for in situ investigation of the distribution of micronutrient and macronutrient elements in several-micrometres-thick unstained biological samples, e.g. single cells and tissues. Elements are mapped and quantified at sub-p.p.m. concentrations. In this study the quantity, distribution and grouping/co-localization of various elements have been identified in straight and twisted internodes of the stems of the monocotyledonous climber D. balcanica Kosanin. Three different statistical methods were employed to analyse the macronutrient and micronutrient distributions and co-localization. Macronutrient elements (K, P, Ca, Cl) are distributed homogeneously in both straight and twisted internodes. Micronutrient elements are mostly grouped in the vasculature and in the sclerenchyma cell layer. In addition, co-localization of micronutrient elements is much more prominent in twisted than in straight internodes. These image analyses and statistical methods provided very similar outcomes and could be applied to various types of biological samples imaged by µSXRF.


Assuntos
Dioscorea/química , Caules de Planta/química , Oligoelementos/análise , Microscopia de Fluorescência , Análise de Componente Principal , Espectrometria por Raios X/métodos
16.
Cells ; 12(11)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37296572

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, with the most common adult-onset neurodegenerative disorder affecting motoneurons. Although disruptions in macromolecular conformation and homeostasis have been described in association with ALS, the underlying pathological mechanisms are still not completely understood, and unambiguous biomarkers are lacking. Fourier Transform Infrared Spectroscopy (FTIR) of cerebrospinal fluid (CSF) is appealing to extensive interest due to its potential to resolve biomolecular conformation and content, as this approach offers a non-invasive, label-free identification of specific biologically relevant molecules in a few microliters of CSF sample. Here, we analyzed the CSF of 33 ALS patients compared to 32 matched controls using FTIR spectroscopy and multivariate analysis and demonstrated major differences in the molecular contents. A significant change in the conformation and concentration of RNA is demonstrated. Moreover, significantly increased glutamate and carbohydrates are found in ALS. Moreover, key markers of lipid metabolism are strongly altered; specifically, we find a decrease in unsaturated lipids and an increase in peroxidation of lipids in ALS, whereas the total amount of lipids compared to proteins is reduced. Our study demonstrates that FTIR characterization of CSF could represent a powerful tool for ALS diagnosis and reveals central features of ALS pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Adulto , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Lipídeos
17.
Biomedicines ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36830838

RESUMO

Synchrotron radiation-based Fourier Transform Infrared (SR-FTIR) microspectroscopy is a non-destructive and chemically sensitive technique for the rapid detection of changes in the different components of the cell's biomacromolecular profile. Reactive oxygen species and oxidative stress may cause damage to the DNA, RNA, and proteins in the retinal pigment epithelium (RPE), which can further lead to age-related macular degeneration (AMD) and visual loss in the elderly. In this study, human primary RPEs (hRPEs) were used to study AMD pathogenesis by using an established in vitro cellular model of the disease. Autophagy-a mechanism of intracellular degradation, which is altered during AMD, was studied in the hRPEs by using the autophagy inducer rapamycin and treated with the autophagy inhibitor bafilomycin A1. In addition, oxidative stress was induced by the hydrogen peroxide (H2O2) treatment of hRPEs. By using SR-FTIR microspectroscopy and multivariate analyses, the changes in the phosphate groups of nucleic acids, Amide I and II of the proteins, the carbonyl groups, and the lipid status in the hRPEs showed a significantly different pattern under oxidative stress/autophagy induction and inhibition. This biomolecular fingerprint can be evaluated in future drug discovery studies affecting autophagy and oxidative stress in AMD.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123090, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37413921

RESUMO

Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.


Assuntos
Metilação de DNA , Síncrotrons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , DNA , Cromatina
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122713, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084681

RESUMO

The reprogramming of human somatic cells to induced pluripotent cells (iPSCs) has become a milestone and a paradigm shift in the field of regenerative medicine and human disease modeling including drug testing and genome editing. However, the molecular processes occurring during reprogramming and affecting the pluripotent state acquired remain largely unknown. Of interest, different pluripotent states have been described depending on the reprogramming factors used and the oocyte has emerged as a valuable source of information for candidate factors. The present study investigates the molecular changes occurring in somatic cells during reprogramming with either canonical (OSK) or oocyte-based (AOX15) combinations using synchrotron-radiation Fourier transform infrared (SR FTIR) spectroscopy. The data acquired by SR FTIR indicates different representation and conformation of biological relevant macromolecules (lipids, nucleic acids, carbohydrates and proteins) depending on the reprogramming combination used and at different stages during the reprogramming process. Association analysis based on cells spectra suggest that pluripotency acquisition trajectories converge at late intermediate stages while they diverge at early stages. Our results suggest that OSK and AOX15 reprogramming operates through differential mechanisms affecting nucleic acids reorganization and day 10 comes out as a candidate hinge point to further study the molecular pathways involved in the reprogramming process. This study indicates that SR FTIR approach contribute unpaired information to distinguish pluripotent states and to decipher pluripotency acquisition roadmaps and landmarks that will enable advanced biomedical applications of iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácidos Nucleicos , Humanos , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Síncrotrons , Espectroscopia de Infravermelho com Transformada de Fourier , Oócitos
20.
Acta Biomater ; 170: 260-272, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574159

RESUMO

Amyloid-ß (Aß) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aß plaques. The current study was designed to test the hypothesis that Aß-related contrast in XPCT could be caused by Aß fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aß plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aß plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAß, J20; rat: TgF344). Aß plaques from the genetic AD patient were visible using XPCT, and had higher ß-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aß plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAß mice. In all four transgenic strains, ß-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAß mice. Hence, a hyperdense contrast formation of Aß plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-ß plaques (Aß), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aß plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aß plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.


Assuntos
Doença de Alzheimer , Oligoelementos , Humanos , Camundongos , Animais , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cobre/química , Raios X , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Metais , Zinco/química , Ferro , Encéfalo/metabolismo , Amiloide , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/química , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA