Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39093227

RESUMO

Due to their immunomodulatory and anti-inflammatory properties, tissue repair capabilities and regenerative potential, Wharton's jelly mesenchymal stem/stromal cells (WJMSCs) have been widely investigated as potential treatment for diverse clinical indications. WJMSCs have been found to be well-tolerated and safe, positioning them as a promising candidate for cellular therapy. To address the commercial need for manufacturing WJMSCs for clinical applications, the production scale should be capable of generating large quantities of cells that retain their expected identity, purity and potency. This study aimed to establish a current Good Manufacturing Practice (cGMP) compliant robust and scalable expansion process representing a critical step towards a cGMP-compliant large-scale production platform for WJMSC-based clinical applications. Using our in-house cGMP-manufactured WJMSCs, which are currently being tested in a Phase Ib clinical trial (NCT03158896) using two-dimensional (2D) planar systems, we optimized various culture parameters including type of microcarrier, seeding density, agitation and culture feed regime in a 3D microcarrier-based culture system in spinner flasks. The results showed that cell adhesion was potentiated under intermittent stirring (3 min of agitation at 25 rpm followed by a period of non-agitation for 30 min), with reduced supplementation (0.05%) during the initial 8 h of cultivation with an initial cell concentration of 0.45 × 105 cells/mL. Microcarrier-based WJMSC expansion in spinner flasks achieved greater cell densities of 1.67 × 106 cells/mL with a maximum of 37-fold expansion, yielding ∼84 × 106 cells after 6 days of culture with a 95% harvest efficiency. Additionally, post 3D expansion, WJMSCs maintained their phenotypic characteristics, differentiation potential, normal karyotype, functional properties and sterility in the culture systems evaluated. This cGMP-compliant expansion process described herein demonstrates a successful transition of an established 2D planar culture process of clinical grade WJMSCs to 3D microcarrier-based suspension process generating higher cell yields, is cost-effective and represents an important step toward fulfilling the commercial demand of clinical grade mesenchymal stromal cells.

2.
Genes Dev ; 26(21): 2386-91, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23124064

RESUMO

We report that Notch signaling is essential for the switch from developmental plasticity to commitment during Caenorhabditis elegans embryogenesis. The GLP-1 and LIN-12 Notch receptors act to set a memory state that affects commitment of cells arising from the major ectodermal progenitor (AB blastomere) several cell divisions later, thereby preventing their forced reprogramming by an endoderm-determining transcription factor. In contrast to Notch-dependent cell fate induction, this activity is autonomous to the AB lineage, is independent of the known cell fate-inducing Notch ligands, and requires a putative secreted Notch ligand, Delta Serrate Lag-3 (DSL-3). Thus, Notch signaling promotes developmental commitment by a mechanism that is distinct from that involved in specifying cell fates.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Diferenciação Celular , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Reprogramação Celular , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento
3.
iScience ; 24(4): 102272, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817577

RESUMO

Although vitamin D3 (VitD3) prevents angiogenesis in cancer, VitD3 deficiency is associated with greater incidence of cardiovascular events in patients. We examined the influence of VitD3 on the angiogenic potential of mesenchymal stem cells (MSCs). VitD3 treatment increased the expression of proangiogenic molecules in MSCs, which exhibited an endothelial cell-like phenotype and promoted vascularization in vitro and in vivo. VitD3 activated the IGF-1 promoter and boosted IGF-1 receptor (IGF-1R) signaling, which was essential for the mesenchymal-to-endothelial transition (MEndoT) of MSCs. VitD3-treated MSCs created a proangiogenic microenvironment for co-cultured arterial endothelial cells, as well as aortic rings. The induction of MEndoT and angiogenesis promotion by VitD3-stimulated MSCs was attenuated by IGF-1R inhibitor picropodophyllin. We conclude that VitD3 promotes MEndoT in MSCs, and VitD3-treated MSCs augment vascularization by producing a proangiogenic niche through continued IGF-1 secretion. These results suggest a potential therapeutic role of VitD3 toward enhancing MSC-induced angiogenesis.

4.
Curr Opin Mol Ther ; 5(2): 113-7, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12772499

RESUMO

Although the discovery that double-stranded RNA is able to silence gene expression was only made five years ago, methods for experimentally silencing genes have already been extended into a broad diversity of organisms, including human cells. RNA interference has also been discovered to function in physiological gene silencing. RNA interference works by causing degradation of targeted mRNAs in the cytoplasm. However, recent results suggest that RNA interference may also silence gene activity in the nucleus by remodeling chromatin and repressing the transcription of targeted genes.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Interferência de RNA/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
6.
Proc Natl Acad Sci U S A ; 99(7): 4191-6, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11904378

RESUMO

RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C. elegans. Three of the genes are C. elegans mes genes, some of which encode homologs of the Drosophila chromatin-binding Polycomb-group proteins. We have used loss-of-function mutants to confirm a role for mes-3, -4, and -6 in RNAi. Interestingly, introducing very low levels of dsRNA can bypass a requirement for these genes in RNAi. The finding that genes predicted to encode proteins that associate with chromatin are involved in RNAi in C. elegans raises the possibility that chromatin may play a role in RNAi in animals, as it does in plants.


Assuntos
Inativação Gênica , RNA de Cadeia Dupla/genética , Animais , Caenorhabditis elegans/genética , Humanos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA