RESUMO
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Assuntos
Evolução Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Most vascular plants form a mutualistic association with arbuscular mycorrhizal (AM) fungi, known as AM symbiosis. The development of AM symbiosis is an asynchronous process, and mycorrhizal roots therefore typically contain several symbiotic structures and various cell types. Hence, the use of whole-plant organs for downstream analyses can mask cell-specific variations in gene expression. To obtain insight into cell-specific reprogramming during AM symbiosis, comparative analyses of various cell types were performed using laser capture microdissection combined with microarray hybridization. Remarkably, the most prominent transcriptome changes were observed in non-arbuscule-containing cells of mycorrhizal roots, indicating a drastic reprogramming of these cells during root colonization that may be related to subsequent fungal colonization. A high proportion of transcripts regulated in arbuscule-containing cells and non-arbuscule-containing cells encode proteins involved in transport processes, transcriptional regulation and lipid metabolism, indicating that reprogramming of these processes is of particular importance for AM symbiosis.
Assuntos
Medicago truncatula/citologia , Micorrizas/fisiologia , Raízes de Plantas/citologia , Simbiose , Transcriptoma , Regulação da Expressão Gênica de Plantas , Microdissecção e Captura a Laser , Metabolismo dos Lipídeos , Medicago truncatula/genética , Medicago truncatula/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/microbiologia , RNA de Plantas/genética , Fatores de Transcrição/metabolismoRESUMO
Conventional genetic engineering techniques generate modifications in the genome via stable integration of DNA elements which do not occur naturally in this combination. Therefore, the resulting organisms and (most) products thereof can unambiguously be identified with event-specific PCR-based methods targeting the insertion site. New breeding techniques such as genome editing diversify the toolbox to generate genetic variability in plants. Several of these techniques can introduce single nucleotide changes without integrating foreign DNA and thereby generate organisms with intended phenotypes. Consequently, such organisms and products thereof might be indistinguishable from naturally occurring or conventionally bred counterparts with established analytical tools. The modifications can entirely resemble random mutations regardless of being spontaneous or induced chemically or via irradiation. Therefore, if an identification of these organisms or products thereof is demanded, a new challenge will arise for (official) seed, food, and feed testing laboratories and enforcement institutions. For detailed consideration, we distinguish between the detection of sequence alterations - regardless of their origin - the identification of the process that generated a specific modification and the identification of a genotype, i.e., an organism produced by genome editing carrying a specific genetic alteration in a known background. This article briefly reviews the existing and upcoming detection and identification strategies (including the use of bioinformatics and statistical approaches) in particular for plants developed with genome editing techniques.
RESUMO
Genome editing describes a variety of molecular biology applications enabling targeted and precise alterations of the genomes of plants, animals and microorganisms. These rapidly developing techniques are likely to revolutionize the breeding of new crop varieties. Since genome editing can lead to the development of plants that could also have come into existence naturally or by conventional breeding techniques, there are strong arguments that these cases should not be classified as genetically modified organisms (GMOs) and be regulated no differently from conventionally bred crops. If a specific regulation would be regarded necessary, the application of genome editing for crop development may challenge risk assessment and post-market monitoring. In the session "Plant genome editing-any novel features to consider for ERA and regulation?" held at the 14th ISBGMO, scientists from various disciplines as well as regulators, risk assessors and potential users of the new technologies were brought together for a knowledge-based discussion to identify knowledge gaps and analyze scenarios for the introduction of genome-edited crops into the environment. It was aimed to enable an open exchange forum on the regulatory approaches, ethical aspects and decision-making considerations.