Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(9): 5191-5207, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35544231

RESUMO

Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterize a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR-family homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localized with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.


Assuntos
Bactérias , Fatores de Transcrição , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Ilhas Genômicas/genética , Plasmídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Appl Environ Microbiol ; 89(9): e0062323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668405

RESUMO

Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.


Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Filogenia , Evolução Biológica , Bactérias , Inglaterra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA