Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(29): E3792-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150523

RESUMO

Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Empacotamento do DNA , Genoma Viral , Montagem de Vírus , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arginina/metabolismo , Fenômenos Biofísicos , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Thermus thermophilus/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
J Mol Biol ; 428(6): 1023-1040, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-26688547

RESUMO

The eukaryotic DNA polymerase sliding clamp, proliferating cell nuclear antigen or PCNA, is a ring-shaped protein complex that surrounds DNA to act as a sliding platform for increasing processivity of cellular replicases and for coordinating various cellular pathways with DNA replication. A single point mutation, Ser228Ile, in the human PCNA gene was recently identified to cause a disease whose symptoms resemble those of DNA damage and repair disorders. The mutation lies near the binding site for most PCNA-interacting proteins. However, the structural consequences of the S228I mutation are unknown. Here, we describe the structure of the disease-causing variant, which reveals a large conformational change that dramatically transforms the binding pocket for PCNA client proteins. We show that the mutation markedly alters the binding energetics for some client proteins, while another, p21(CIP1), is only mildly affected. Structures of the disease variant bound to peptides derived from two PCNA partner proteins reveal that the binding pocket can adjust conformation to accommodate some ligands, indicating that the binding site is dynamic and pliable. Our work has implications for the plasticity of the binding site in PCNA and reveals how a disease mutation selectively alters interactions to a promiscuous binding site that is critical for DNA metabolism.


Assuntos
Doenças Genéticas Inatas/patologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas
3.
Nat Struct Mol Biol ; 23(1): 59-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656853

RESUMO

The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced-degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex by using negative-stain electron microscopy; our results indicate that the exocyst exists predominantly as a stable, octameric complex with an elongated architecture that suggests that the subunits are contiguous helical bundles packed together into a bundle of long rods.


Assuntos
Exocitose , Substâncias Macromoleculares/química , Substâncias Macromoleculares/isolamento & purificação , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/isolamento & purificação , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas de Transporte Vesicular/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA