Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33896623

RESUMO

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Assuntos
Transtorno Depressivo Maior , Anedonia , Animais , Ansiedade , Feminino , Masculino , Camundongos , Córtex Pré-Frontal , Caracteres Sexuais
2.
Sci Adv ; 8(48): eabn9494, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449610

RESUMO

Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.

3.
Neuron ; 106(6): 912-926.e5, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32304628

RESUMO

Depression is a common disorder that affects women at twice the rate of men. Here, we report that long non-coding RNAs (lncRNAs), a recently discovered class of regulatory transcripts, represent about one-third of the differentially expressed genes in the brains of depressed humans and display complex region- and sex-specific patterns of regulation. We identified the primate-specific, neuronal-enriched gene LINC00473 as downregulated in prefrontal cortex (PFC) of depressed females but not males. Using viral-mediated gene transfer to express LINC00473 in adult mouse PFC neurons, we mirrored the human sex-specific phenotype by inducing stress resilience solely in female mice. This sex-specific phenotype was accompanied by changes in synaptic function and gene expression selectively in female mice and, along with studies of human neuron-like cells in culture, implicates LINC00473 as a CREB effector. Together, our studies identify LINC00473 as a female-specific driver of stress resilience that is aberrant in female depression.


Assuntos
Transtorno Depressivo Maior/genética , Córtex Pré-Frontal/metabolismo , RNA Longo não Codificante/genética , Resiliência Psicológica , Estresse Psicológico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Comportamento Animal , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , RNA Longo não Codificante/metabolismo , RNA-Seq , Fatores Sexuais , Estresse Psicológico/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA