RESUMO
We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)-associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results were compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5 to 6month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype.
Assuntos
Cardiomiopatia Hipertrófica/genética , Mutação , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Músculos Papilares/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Diástole , Regulação da Expressão Gênica , Frequência Cardíaca , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Relaxamento Muscular , Contração Miocárdica , Miócitos Cardíacos/patologia , Cadeias Leves de Miosina/metabolismo , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/patologia , Cultura Primária de Células , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ultrassonografia Doppler de PulsoRESUMO
Force production in muscle results from ATP-driven cyclic interactions of myosin with actin. A myosin cross bridge consists of a globular head domain, containing actin and ATP-binding sites, and a neck domain with the associated light chain 1 (LC1) and the regulatory light chain (RLC). The actin polymer serves as a "rail" over which myosin translates. Phosphorylation of the RLC is thought to play a significant role in the regulation of muscle relaxation by increasing the degree of skeletal cross-bridge disorder and increasing muscle ATPase activity. The effect of phosphorylation on skeletal cross-bridge kinetics and the distribution of orientations during steady-state contraction of rabbit muscle is investigated here. Because the kinetics and orientation of an assembly of cross bridges (XBs) can only be studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs was minimized to â¼20 by limiting the detection volume and concentration of fluorescent XBs. The autofluorescence and photobleaching from an ex vivo sample was reduced by choosing a dye that was excited in the red and observed in the far red. The interference from scattering was eliminated by gating the signal. These techniques decrease large uncertainties associated with determination of the effect of phosphorylation on a few molecules ex vivo with millisecond time resolution. In spite of the remaining uncertainties, we conclude that the state of phosphorylation of RLC had no effect on the rate of dissociation of cross bridges from thin filaments, on the rate of myosin head binding to thin filaments, and on the rate of power stroke. On the other hand, phosphorylation slightly increased the degree of disorder of active cross bridges.
Assuntos
Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Animais , Cinética , Contração Muscular/fisiologia , Fosforilação , CoelhosRESUMO
The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. We therefore searched for the differences between single myosin molecules of the LV and RV of failing hearts In-situ. We show that the parameters that define the mechanical characteristics of working myosin (kinetic rates and the distribution of spatial orientation of myosin lever arm) were the same in both ventricles. These results suggest that there is no difference in the way myosin interacts with thin filaments in myocytes of failing hearts, and suggests that the difference in pumping efficiencies are caused by interactions between muscle proteins other than myosin or that they are purely morphological.
RESUMO
Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy.
Assuntos
Antineoplásicos/química , Meios de Contraste/química , Doxorrubicina/análogos & derivados , Lipoproteínas HDL/química , Nanopartículas/química , Antineoplásicos/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Linhagem Celular Tumoral , Meios de Contraste/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Microscopia Confocal , Espectrometria de Fluorescência , TemperaturaRESUMO
Contraction of muscles results from the ATP-coupled cyclic interactions of the myosin cross-bridges with actin filaments. Macroscopic parameters of contraction, such as maximum tension, speed of shortening, or ATPase activity, are unlikely to reveal differences between the wild-type and mutated (MUT) proteins when the level of transgenic protein expression is low. This is because macroscopic measurements are made on whole organs containing trillions of actin and myosin molecules. An average of the information collected from such a large assembly is bound to conceal any differences imposed by a small fraction of MUT molecules. To circumvent the averaging problem, the measurements were done on isolated ventricular myofibril (MF) in which thin filaments were sparsely labeled with a fluorescent dye. We isolated a single MF from a ventricle, oriented it vertically (to be able measure the orientation), and labeled 1 in 100,000 actin monomers with a fluorescent dye. We observed the fluorescence from a small confocal volume containing approximately three actin molecules. During the contraction of a ventricle actin constantly changes orientation (i.e., the transition moment of rigidly attached fluorophore fluctuates in time) because it is repetitively being "kicked" by myosin cross-bridges. An autocorrelation functions (ACFs) of these fluctuations are remarkably sensitive to the mutation of myosin. We examined the effects of Alanine to Threonine (A13T) mutation in the myosin regulatory light chain shown by population studies to cause hypertrophic cardiomyopathy. This is an appropriate example, because mutation is expressed at only 10% in the ventricles of transgenic mice. ACFs were either "Standard" (Std) (decaying monotonically in time) or "Non-standard" (NStd) (decaying irregularly). The sparse labeling of actin also allowed the measurement of the spatial distribution of actin molecules. Such distribution reflects the interaction of actin with myosin cross-bridges and is also remarkably sensitive to myosin mutation. The result showed that the A13T mutation caused 9% ACFs and 9% of spatial distributions of actin to be NStd, while the remaining 91% were Std, suggesting that the NStd performances were executed by the MUT myosin heads and that the Std performances were executed by non-MUT myosin heads. We conclude that the method explored in this study is a sensitive and valid test of the properties of low prevalence mutations in sarcomeric proteins.