Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 68(1): 70-80, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20582986

RESUMO

OBJECTIVE: Exposure to a number of drugs, chemicals, or environmental factors can cause parkinsonism. Epidemiologic evidence supports a causal link between the consumption of flour made from the washed seeds of the plant Cycas micronesica by the Chamorro population of Guam and the development of amyotrophic lateral sclerosis/parkinsonism dementia complex. METHODS: We now report that consumption of washed cycad flour pellets by Sprague-Dawley male rats induces progressive parkinsonism. RESULTS: Cycad-fed rats displayed motor abnormalities after 2 to 3 months of feeding such as spontaneous unilateral rotation, shuffling gait, and stereotypy. Histological and biochemical examination of brains from cycad-fed rats revealed an initial decrease in the levels of dopamine and its metabolites in the striatum (STR), followed by neurodegeneration of dopaminergic (DAergic) cell bodies in the substantia nigra (SN) pars compacta (SNc). alpha-Synuclein (alpha-syn; proteinase K-resistant) and ubiquitin aggregates were found in the DAergic neurons of the SNc and neurites in the STR. In addition, we identified alpha-syn aggregates in neurons of the locus coeruleus and cingulate cortex. No loss of motor neurons in the spinal cord was found after chronic consumption of cycad flour. In an organotypic slice culture of the rat SN and the striatum, an organic extract of cycad causes a selective loss of dopamine neurons and alpha-syn aggregates in the SN. INTERPRETATION: Cycad-fed rats exhibit progressive behavioral, biochemical, and histological hallmarks of parkinsonism, coupled with a lack of fatality.


Assuntos
Cycas/toxicidade , Neurotoxinas/toxicidade , Transtornos Parkinsonianos/etiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dieta , Modelos Animais de Doenças , Progressão da Doença , Discinesias/etiologia , Discinesias/metabolismo , Discinesias/patologia , Farinha/toxicidade , Técnicas In Vitro , Masculino , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurotoxinas/administração & dosagem , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Extratos Vegetais/toxicidade , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
J Virol ; 78(15): 8392-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15254211

RESUMO

The murine leukemia virus (MLV) TR1.3 provides an excellent model to study the wide range of retrovirus-induced central nervous system (CNS) pathology and disease. TR1.3 rapidly induces thrombotic events in brain microvessels and causes cell-specific syncytium formation of brain capillary endothelial cells (BCEC). A single amino acid substitution, W102G, in the MLV envelope protein (Env) regulates the pathogenic effects. The role of Env in determining this disease phenotype compared to the induction of spongiform encephalomyelitis with a longer latency, as seen in several other MLV and in human retroviruses, was determined by studying in vitro-attenuated TR1.3. Virus cloned from this selection, termed TRM, induced progressive neurological disease characterized by ataxia and paralysis and the appearance of spongiform neurodegeneration throughout the brain stem and spinal cord. This disease was associated with virus replication in both BCEC and highly ramified glial cells. TRM did not induce syncytium formation, either in vivo or in vitro. Sequence and mutational analyses demonstrated that TRM contained a reversion of Env G102W but that neurological disease mapped to the single amino acid substitution Env S159P. The results demonstrate that single nucleotide changes within disparate regions of Env control dramatically different CNS disease patterns.


Assuntos
Doenças do Sistema Nervoso Central/etiologia , Vírus da Leucemia Murina/patogenicidade , Proteínas do Envelope Viral/química , Animais , Linhagem Celular , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/virologia , Coturnix , Feminino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Tropismo , Proteínas do Envelope Viral/fisiologia
3.
J Virol ; 77(9): 5145-51, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692217

RESUMO

PVC-211 murine leukemia virus (MuLV) is a neuropathogenic variant of Friend MuLV (F-MuLV) which causes a rapidly progressive spongiform neurodegenerative disease in rodents. The primary target of PVC-211 MuLV infection in the brain is the brain capillary endothelial cell (BCEC), which is resistant to F-MuLV infection. Previous studies have shown that changes in the envelope gene of PVC-211 MuLV confer BCEC tropism to the virus. However, little is known about how infection of BCECs by PVC-211 MuLV induces neurological disease. Previous results suggest that nitric oxide (NO), which has been implicated as a potential neurotoxin, is involved in PVC-211 MuLV-induced neurodegeneration. In this study, we show that expression of inducible nitric oxide synthase (iNOS), which produces NO from L-arginine, is induced in BCECs from PVC-211 MuLV-infected rats. Furthermore, elevated levels of a 32-kDa cellular protein modified by 3-nitrotyrosine, which is a hallmark of NO production, were observed in virus-infected BCECs. BCECs from rats infected with BCEC-tropic but nonneuropathogenic PVF-e5 MuLV, which is a chimeric virus between PVC-211 MuLV and F-MuLV, fail to induce either iNOS expression or elevation of tyrosine nitration of a 32-kDa protein. These results suggest that expression of iNOS and nitration of tyrosine residues of a 32-kDa protein in PVC-211 MuLV-infected BCECs may play an important role in neurological disease induction.


Assuntos
Encéfalo/irrigação sanguínea , Endotélio Vascular/virologia , Vírus da Leucemia Murina/patogenicidade , Óxido Nítrico Sintase/biossíntese , Proteínas/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Células 3T3 , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/virologia , Capilares/virologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Camundongos , Sistema Nervoso/patologia , Sistema Nervoso/virologia , Óxido Nítrico Sintase Tipo II , Ratos , Ratos Endogâmicos F344 , Infecções por Retroviridae/fisiopatologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/fisiopatologia , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA