Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(37): 18544-18549, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451663

RESUMO

The detection of microbes and damaged host cells by the innate immune system is essential for host defense against infection and tissue homeostasis. However, how distinct positive and negative regulatory signals from immune receptors are integrated to tailor specific responses in complex scenarios remains largely undefined. Clec12A is a myeloid cell-expressed inhibitory C-type lectin receptor that can sense cell death under sterile conditions. Clec12A detects uric acid crystals and limits proinflammatory pathways by counteracting the cell-activating spleen tyrosine kinase (Syk). Here, we surprisingly find that Clec12A additionally amplifies type I IFN (IFN-I) responses in vivo and in vitro. Using retinoic acid-inducible gene I (RIG-I) signaling as a model, we demonstrate that monosodium urate (MSU) crystal sensing by Clec12A enhances cytosolic RNA-induced IFN-I production and the subsequent induction of IFN-I-stimulated genes. Mechanistically, Clec12A engages Src kinase to positively regulate the TBK1-IRF3 signaling module. Consistently, Clec12A-deficient mice exhibit reduced IFN-I responses upon lymphocytic choriomeningitis virus (LCMV) infection, which affects the outcomes of these animals in acute and chronic virus infection models. Thus, our results uncover a previously unrecognized connection between an MSU crystal-sensing receptor and the IFN-I response, and they illustrate how the sensing of extracellular damage-associated molecular patterns (DAMPs) can shape the immune response.


Assuntos
Alarminas/imunologia , Interferon Tipo I/imunologia , Lectinas Tipo C/metabolismo , Coriomeningite Linfocítica/imunologia , Receptores Mitogênicos/metabolismo , Ácido Úrico/imunologia , Animais , Citosol/imunologia , Citosol/metabolismo , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Knockout , Moléculas com Motivos Associados a Patógenos/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA/imunologia , RNA/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/imunologia , Transdução de Sinais/imunologia
2.
PLoS Pathog ; 15(6): e1007797, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220194

RESUMO

During viral infection, tight regulation of CD8+ T-cell functions determines the outcome of the disease. Recently, others and we determined that the natural killer (NK) cells kill hyperproliferative CD8+ T cells in the context of viral infection, but molecules that are involved in shaping the regulatory capability of NK cells remain virtually unknown. Here we used mice lacking the Fc-receptor common gamma chain (FcRγ, FcεRIγ, Fcer1g-/- mice) to determine the role of Fc-receptor and NK-receptor signaling in the process of CD8+ T-cell regulation. We found that the lack of FcRγ on NK cells limits their ability to restrain virus-specific CD8+ T cells and that the lack of FcRγ in Fcer1g-/- mice leads to enhanced CD8+ T-cell responses and rapid control of the chronic docile strain of the lymphocytic choriomeningitis virus (LCMV). Mechanistically, FcRγ stabilized the expression of NKp46 but not that of other killer cell-activating receptors on NK cells. Although FcRγ did not influence the development or activation of NK cell during LCMV infection, it specifically limited their ability to modulate CD8+ T-cell functions. In conclusion, we determined that FcRγ plays an important role in regulating CD8+ T-cell functions during chronic LCMV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores Fc/imunologia , Doença Aguda , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Camundongos , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Receptores Fc/genética
3.
Biol Chem ; 399(10): 1115-1123, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29975662

RESUMO

In this review, we summarize the mechanisms by which sphingolipids modulate virus multiplication and the host innate immune response, using a number of host-virus systems as illustrative models. Sphingolipids exert diverse functions, both at the level of the viral life cycle and in the regulation of antiviral immune responses. Sphingolipids may influence viral replication in three ways: by serving as (co)receptors during viral entry, by modulating virus replication, and by shaping the antiviral immune response. Several studies have demonstrated that sphingosine kinases (SphK) and their product, sphingosine-1-phosphate (S1P), enhance the replication of influenza, measles, and hepatitis B virus (HBV). In contrast, ceramides, particularly S1P and SphK1, influence the expression of type I interferon (IFN-I) by modulating upstream antiviral signaling and enhancing dendritic cell maturation, differentiation, and positioning in tissue. The synthetic molecule α-galactosylceramide has also been shown to stimulate natural killer cell activation and interferon (IFN)-γ secretion. However, to date, clinical trials have failed to demonstrate any clinical benefit for sphingolipids in the treatment of cancer or HBV infection. Taken together, these findings show that sphingolipids play an important and underappreciated role in the control of virus replication and the innate immune response.


Assuntos
Imunidade Inata/imunologia , Esfingolipídeos/imunologia , Esfingolipídeos/metabolismo , Replicação Viral , Animais , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Humanos , Vírus do Sarampo/crescimento & desenvolvimento , Vírus do Sarampo/imunologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/imunologia
4.
Brain Behav Immun ; 60: 220-232, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27847282

RESUMO

OBJECTIVE: Preterm brain injury is a major cause of disability in later life, and may result in motor, cognitive and behavioural impairment for which no treatment is currently available. The aetiology is considered as multifactorial, and one underlying key player is inflammation leading to white and grey matter injury. Extracellular vesicles secreted by mesenchymal stem/stromal cells (MSC-EVs) have shown therapeutic potential in regenerative medicine. Here, we investigated the effects of MSC-EV treatment on brain microstructure and maturation, inflammatory processes and long-time outcome in a rodent model of inflammation-induced brain injury. METHODS: 3-Day-old Wistar rats (P3) were intraperitoneally injected with 0.25mg/kg lipopolysaccharide or saline and treated with two repetitive doses of 1×108 cell equivalents of MSC-EVs per kg bodyweight. Cellular degeneration and reactive gliosis at P5 and myelination at P11 were evaluated by immunohistochemistry and western blot. Long-term cognitive and motor function was assessed by behavioural testing. Diffusion tensor imaging at P125 evaluated long-term microstructural white matter alterations. RESULTS: MSC-EV treatment significantly ameliorated inflammation-induced neuronal cellular degeneration reduced microgliosis and prevented reactive astrogliosis. Short-term myelination deficits and long-term microstructural abnormalities of the white matter were restored by MSC-EV administration. Morphological effects of MSC-EV treatment resulted in improved long-lasting cognitive functions INTERPRETATION: MSC-EVs ameliorate inflammation-induced cellular damage in a rat model of preterm brain injury. MSC-EVs may serve as a novel therapeutic option by prevention of neuronal cell death, restoration of white matter microstructure, reduction of gliosis and long-term functional improvement.


Assuntos
Lesões Encefálicas/metabolismo , Encefalite/metabolismo , Células-Tronco Mesenquimais/citologia , Substância Branca/efeitos dos fármacos , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Wistar
5.
Cell Physiol Biochem ; 38(3): 1171-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963287

RESUMO

BACKGROUND/AIMS: Unexpected transmissions of viral pathogens during solid organ transplantation (SOT) can result in severe, life-threatening diseases in transplant recipients. Immune activation contributes to disease onset. However mechanisms balancing the immune response against transmitted viral infection through organ transplantation remain unknown. Methods & RESULTS: Here we found, using lymphocytic choriomeningitis virus (LCMV), that transplantation of LCMV infected hearts led to exhaustion of virus specific CD8+ T cells, viral persistence in organs and survival of graft and recipient. Genetic depletion of Interleukin-10 (IL-10) resulted in strong immune activation, graft dysfunction and death of mice, suggesting that IL-10 was a major regulator of CD8+ T cell exhaustion during SOT. In the presence of memory CD8+ T cells, virus could be controlled. However sufficient antiviral immune response resulted in acute rejection of transplanted heart. CONCLUSION: We found that virus transmitted via SOT could not be controlled by naïve mice recipients due to IL-10 mediated CD8+ T cell exhaustion which thereby prevented immunopathology and graft failure whereas memory mice recipients were able to control the virus and induced graft failure.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Coração/virologia , Interleucina-10/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Modelos Animais de Doenças , Rejeição de Enxerto/virologia , Sobrevivência de Enxerto , Imunização , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell Physiol Biochem ; 38(4): 1343-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007114

RESUMO

BACKGROUND: Graft versus host disease (GvHD) occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT). Mechanisms causing this disease remain to be studied. METHODS: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+) and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33) antigen derived from the major lymphocytic choriomeningitis virus (LCMV) epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. RESULTS: We found that anti-host reactive CD8+ T cells (P14 T cells) were not negatively selected in the thymus and that they were present in wild type (WT) recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS) induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. CONCLUSION: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.


Assuntos
Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Alanina Transaminase/metabolismo , Animais , Anticorpos/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Epitopos/imunologia , Citometria de Fluxo , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/toxicidade , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transplante Homólogo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
7.
J Virol ; 89(9): 4748-59, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673724

RESUMO

UNLABELLED: The B cell-activating factor (BAFF) is critical for B cell development and humoral immunity in mice and humans. While the role of BAFF in B cells has been widely described, its role in innate immunity remains unknown. Using BAFF receptor (BAFFR)-deficient mice, we characterized BAFFR-related innate and adaptive immune functions following infection with vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV). We identified a critical role for BAFFR signaling in the generation and maintenance of the CD169(+) macrophage compartment. Consequently, Baffr(-) (/) (-) mice exhibited limited induction of innate type I interferon production after viral infection. Lack of BAFFR signaling reduced virus amplification and presentation following viral infection, resulting in highly reduced antiviral adaptive immune responses. As a consequence, BAFFR-deficient mice showed exacerbated and fatal disease after viral infection. Mechanistically, transient lack of B cells in Baffr(-) (/) (-) animals resulted in limited lymphotoxin expression, which is critical for maintenance of CD169(+) cells. In conclusion, BAFFR signaling affects both innate and adaptive immune activation during viral infections. IMPORTANCE: Viruses cause acute and chronic infections in humans resulting in millions of deaths every year. Innate immunity is critical for the outcome of a viral infection. Innate type I interferon production can limit viral replication, while adaptive immune priming by innate immune cells induces pathogen-specific immunity with long-term protection. Here, we show that BAFFR deficiency not only perturbed B cells, but also resulted in limited CD169(+) macrophages. These macrophages are critical in amplifying viral particles to trigger type I interferon production and initiate adaptive immune priming. Consequently, BAFFR deficiency resulted in reduced enforced viral replication, limited type I interferon production, and reduced adaptive immunity compared to BAFFR-competent controls. As a result, BAFFR-deficient mice were predisposed to fatal viral infections. Thus, BAFFR expression is critical for innate immune activation and antiviral immunity.


Assuntos
Infecções por Arenaviridae/imunologia , Macrófagos/química , Macrófagos/imunologia , Receptores de Interleucina-4/deficiência , Infecções por Rhabdoviridae/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/análise , Imunidade Adaptativa , Animais , Imunidade Inata , Interferon Tipo I/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos Knockout , Transdução de Sinais , Vesiculovirus/imunologia
8.
J Autoimmun ; 67: 82-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553386

RESUMO

The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Replicação Viral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Interferon Tipo I/biossíntese , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/virologia , Ativação Linfocitária , Linfócitos/imunologia , Linfócitos/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Linfotoxina-beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Baço/imunologia , Baço/metabolismo , Baço/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
9.
Cell Physiol Biochem ; 36(6): 2379-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279441

RESUMO

BACKGROUND: Type I interferon (IFN-I) predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α). IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. METHODS: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV). Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar(-/-) mice under the influence of LCMV or poly(I:C). RESULTS: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C)-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. CONCLUSION: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.


Assuntos
Interferon Tipo I/farmacologia , Vírus da Coriomeningite Linfocítica/fisiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Animais , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Imunidade Inata/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Neutropenia/imunologia , Neutropenia/patologia , Poli I-C/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Baço/efeitos dos fármacos , Baço/metabolismo , Virulência/efeitos dos fármacos
10.
J Autoimmun ; 62: 11-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094774

RESUMO

Autoantibodies are a hallmark of autoimmune diseases, such as rheumatoid arthritis, autoimmune hepatitis, and systemic lupus erythematosus (SLE). High titers of anti-nuclear antibodies are used as surrogate marker for SLE, however their contribution to pathogenesis remains unclear. Using murine model of SLE and human samples, we studied the effect of immune stimulation on relapsing of SLE. Although autoantibodies bound to target cells in vivo, only additional activation of CD8(+) T cells converted this silent autoimmunity into overt disease. In mice as well as in humans CD8(+) T cells derived IFN-γ enhanced expression of Fc-receptors on CD11b(+) cells. High expression of Fc-receptors allowed CD11b(+) cells to bind to antibody covered target cells and to destroy them in vivo. We found that autoantibodies induce clinically relevant disease when adaptive immunity, specific for disease non-related antigen, is activated.


Assuntos
Antígeno CD11b/metabolismo , Interferon gama/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Autoanticorpos/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Receptores de IgG/genética , Recidiva
11.
Curr Opin Immunol ; 69: 18-28, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588308

RESUMO

Cancer immunotherapies are receiving increasing approval in the clinic, but still only a fraction of patients benefit long-term. Understanding the most important mechanisms of immunotherapeutic resistance is critical for broader utility and benefit of cancer immunotherapy. While the tumor microenvironment (TME) is made up of many cell types, immunosuppressive monocytes/macrophages, granulocytes and myeloid derived suppressor cells interact with, and play a critical role in regulating the anti-tumor lymphocyte effector cells that mediate effective immunotherapies. Herein, we discuss the latest research that has identified and compared the importance of pro-tumor and immunosuppressive mechanisms that tumor infiltrating myeloid cells employ. Exploiting this new information may help to develop totally novel therapies to boost contemporary cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Animais , Humanos , Imunidade Inata , Neoplasias/imunologia , Microambiente Tumoral
12.
Pathogens ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069514

RESUMO

The replication of viruses in secondary lymphoid organs guarantees sufficient amounts of pattern-recognition receptor ligands and antigens to activate the innate and adaptive immune system. Viruses with broad cell tropism usually replicate in lymphoid organs; however, whether a virus with a narrow tropism relies on replication in the secondary lymphoid organs to activate the immune system remains not well studied. In this study, we used the artificial intravenous route of infection to determine whether Influenza A virus (IAV) replication can occur in secondary lymphatic organs (SLO) and whether such replication correlates with innate immune activation. Indeed, we found that IAV replicates in secondary lymphatic tissue. IAV replication was dependent on the expression of Sialic acid residues in antigen-presenting cells and on the expression of the interferon-inhibitor UBP43 (Usp18). The replication of IAV correlated with innate immune activation, resulting in IAV eradication. The genetic deletion of Usp18 curbed IAV replication and limited innate immune activation. In conclusion, we found that IAV replicates in SLO, a mechanism which allows innate immune activation.

13.
Vaccines (Basel) ; 8(1)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210083

RESUMO

Ebola virus epidemics can be effectively limited by the VSV-EBOV vaccine (Ervebo) due to its rapid protection abilities; however, side effects prevent the broad use of VSV-EBOV as vaccine. Mechanisms explaining the efficient immune activation after single injection with the VSV-EBOV vaccine remain mainly unknown. Here, using the clinically available VSV-EBOV vaccine (Ervebo), we show that the cell-intrinsic expression of the interferon-inhibitor Usp18 in CD169+ macrophages is one important factor modulating the anti-Ebola virus immune response. The absence of Usp18 in CD169+ macrophages led to the reduced local replication of VSV-EBOV followed by a diminished innate as well as adaptive immune response. In line, CD169-Cre+/ki x Usp18fl/fl mice showed reduced innate and adaptive immune responses against the VSV wildtype strain and died quickly after infection, suggesting that a lack of Usp18 makes mice more susceptible to the side effects of the VSV vector. In conclusion, our study shows that Usp18 expression in CD169+ macrophages is one important surrogate marker for effective vaccination against VSV-EBOV, and probably other VSV-based vaccines also.

14.
Pathogens ; 9(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033109

RESUMO

The replication of virus in secondary lymphoid organs is crucial for the activation of antigen-presenting cells. Balanced viral replication ensures the sufficient availability of antigens and production of cytokines, and both of which are needed for virus-specific immune activation and viral elimination. Host factors that regulate coordinated viral replication are not fully understood. In the study reported here, we identified Map3k14 as an important regulator of enforced viral replication in the spleen while performing genome-wide association studies of various inbred mouse lines in a model of lymphocytic choriomeningitis virus (LCMV) infection. When alymphoplasia mice (aly/aly, Map3k14aly/aly, or Nikaly/aly), which carry a mutation in Map3k14, were infected with LCMV or vesicular stomatitis virus (VSV), they display early reductions in early viral replication in the spleen, reduced innate and adaptive immune activation, and lack of viral control. Histologically, scant B cells and the lack of CD169+ macrophages correlated with reduced immune activation in Map3k14aly/aly mice. The transfer of wildtype B cells into Map3k14aly/aly mice repopulated CD169+ macrophages, restored enforced viral replication, and resulted in enhanced immune activation and faster viral control.

15.
Front Immunol ; 11: 607889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584680

RESUMO

Early and strong production of IFN-I by dendritic cells is important to control vesicular stomatitis virus (VSV), however mechanisms which explain this cell-type specific innate immune activation remain to be defined. Here, using a genome wide association study (GWAS), we identified Integrin alpha-E (Itgae, CD103) as a new regulator of antiviral IFN-I production in a mouse model of vesicular stomatitis virus (VSV) infection. CD103 was specifically expressed by splenic conventional dendritic cells (cDCs) and limited IFN-I production in these cells during VSV infection. Mechanistically, CD103 suppressed AKT phosphorylation and mTOR activation in DCs. Deficiency in CD103 accelerated early IFN-I in cDCs and prevented death in VSV infected animals. In conclusion, CD103 participates in regulation of cDC specific IFN-I induction and thereby influences immune activation after VSV infection.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/virologia , Imunidade Inata , Cadeias alfa de Integrinas/metabolismo , Interferon Tipo I/metabolismo , Estomatite Vesicular/virologia , Vesiculovirus/patogenicidade , Animais , Antígenos CD/genética , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Cadeias alfa de Integrinas/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Estomatite Vesicular/genética , Estomatite Vesicular/imunologia , Estomatite Vesicular/metabolismo , Vesiculovirus/crescimento & desenvolvimento , Replicação Viral
16.
Cell Rep ; 30(11): 3671-3681.e5, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187540

RESUMO

Infections can result in a temporarily restricted unresponsiveness of the innate immune response, thereby limiting pathogen control. Mechanisms of such unresponsiveness are well studied in lipopolysaccharide tolerance; however, whether mechanisms of tolerance limit innate immunity during virus infection remains unknown. Here, we find that infection with the highly cytopathic vesicular stomatitis virus (VSV) leads to innate anergy for several days. Innate anergy is associated with induction of apoptotic cells, which activates the Tyro3, Axl, and Mertk (TAM) receptor Mertk and induces high levels of interleukin-10 (IL-10) and transforming growth factor ß (TGF-ß). Lack of Mertk in Mertk-/- mice prevents induction of IL-10 and TGF-ß, resulting in abrogation of innate anergy. Innate anergy is associated with enhanced VSV replication and poor survival after infection. Mechanistically, Mertk signaling upregulates suppressor of cytokine signaling 1 (SOCS1) and SOCS3. Dexamethasone treatment upregulates Mertk and enhances innate anergy in a Mertk-dependent manner. In conclusion, we identify Mertk as one major regulator of innate tolerance during infection with VSV.


Assuntos
Anergia Clonal , Imunidade Inata , Estomatite Vesicular/enzimologia , Estomatite Vesicular/imunologia , Vesiculovirus/fisiologia , c-Mer Tirosina Quinase/metabolismo , Doença Aguda , Animais , Antivirais/metabolismo , Morte Celular/efeitos dos fármacos , Anergia Clonal/efeitos dos fármacos , Dexametasona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Interleucina-10/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Estomatite Vesicular/virologia
17.
Nat Commun ; 11(1): 1338, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165633

RESUMO

Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.


Assuntos
Ceramidase Ácida/metabolismo , Herpes Simples/enzimologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/fisiologia , Macrófagos/enzimologia , Corpos Multivesiculares/virologia , Ceramidase Ácida/genética , Animais , Feminino , Herpes Simples/virologia , Humanos , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Replicação Viral
18.
Front Immunol ; 11: 1849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973762

RESUMO

Immune activation within the tumor microenvironment is one promising approach to induce tumor regression. Certain viruses including oncolytic viruses such as the herpes simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not all tumor types respond to viro- and/or immunotherapy and mechanisms accounting for such differences remain to be defined. In our current investigation, we used the non-cytopathic LCMV in different human melanoma models and found that melanoma cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated cytotoxicity as new factors influencing melanoma regression during virotherapy.


Assuntos
Infecções por Arenaviridae/imunologia , Quimiocina CCL5/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Vírus Oncolíticos/imunologia
19.
Front Immunol ; 10: 466, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930901

RESUMO

Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7-/- mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7-/- mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7-/- mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.


Assuntos
Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Infecções por Rhabdoviridae/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Receptor 7 Toll-Like/imunologia , Vesiculovirus/fisiologia , Replicação Viral/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Macrófagos/virologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/patologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Medula Espinal/imunologia , Medula Espinal/virologia , Receptor 7 Toll-Like/genética , Replicação Viral/genética
20.
Stem Cells Transl Med ; 8(10): 1084-1091, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179644

RESUMO

Bone infections are a frequent cause for large bony defects with a reduced healing capacity. In previous findings, we could already show diminished healing capacity after bone infections, despite the absence of the causing agent, Staphylococcus aureus. Moreover, these bony defects showed reduced osteoblastogenesis and increased osteoclastogenesis, meaning elevated bone resorption ongoing with an elevated B-cell activity. To overcome the negative effects of this postinfectious inflammatory state, we tried to use the regenerative capacity of mesenchymal stem cells derived from adipose tissue (adipose-derived stem cells [ASCs]) to improve bone regeneration and moreover were curious about immunomodulation of applicated stem cells in this setting. Therefore, we used our established murine animal model and applicated ASCs locally after sufficient debridement of infected bones. Bone regeneration and resorption as well as immunological markers were investigated via histology, immunohistochemistry, Western blot, and fluorescence-activated cell scanning (FACS) analysis and µ-computed tomography (CT) analysis. Interestingly, ASCs were able to restore bone healing via elevation of osteoblastogenesis and downregulation of osteoclasts. Surprisingly, stem cells showed an impact on the innate immune system, downregulating B-cell population. In summary, these data provide a fascinating new and innovative approach, supporting bone healing after bacterial infections and moreover gain insights into the complex ceremony of stem cell interaction in terms of bone infection and regeneration. Stem Cells Translational Medicine 2019;8:1084-1091.


Assuntos
Tecido Adiposo/metabolismo , Linfócitos B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteomielite/fisiopatologia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA