Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; : MPMI12230212CR, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38949402

RESUMO

Effector secretion by different routes mediates the molecular interplay between host plant and pathogen, but mechanistic details in eukaryotes are sparse. This may limit the discovery of new effectors that could be utilized for improving host plant disease resistance. In fungi and oomycetes, apoplastic effectors are secreted via the conventional endoplasmic reticulum (ER)-Golgi pathway, while cytoplasmic effectors are packaged into vesicles that bypass Golgi in an unconventional protein secretion (UPS) pathway. In Magnaporthe oryzae, the Golgi bypass UPS pathway incorporates components of the exocyst complex and a t-SNARE, presumably to fuse Golgi bypass vesicles to the fungal plasma membrane. Upstream, cytoplasmic effector mRNA translation in M. oryzae requires the efficient decoding of AA-ending codons. This involves the modification of wobble uridines in the anticodon loop of cognate tRNAs and fine-tunes cytoplasmic effector translation and secretion rates to maintain biotrophic interfacial complex integrity and permit host infection. Thus, plant-fungal interface integrity is intimately tied to effector codon usage, which is a surprising constraint on pathogenicity. Here, we discuss these findings within the context of fungal and oomycete effector discovery, delivery, and function in host cells. We show how cracking the codon code for unconventional cytoplasmic effector secretion in M. oryzae has revealed AA-ending codon usage bias in cytoplasmic effector mRNAs across kingdoms, including within the RxLR-dEER motif-encoding sequence of a bona fide Phytophthora infestans cytoplasmic effector, suggesting its subjection to translational speed control. By focusing on recent developments in understanding unconventional effector secretion, we draw attention to this important but understudied area of host-pathogen interactions. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

2.
J Cell Sci ; 134(5)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33414165

RESUMO

The fungus Magnaporthe oryzae uses a specialized pressure-generating infection cell called an appressorium to break into rice leaves and initiate disease. Appressorium functionality is dependent on the formation of a cortical septin ring during its morphogenesis, but precisely how this structure assembles is unclear. Here, we show that F-actin rings are recruited to the circumference of incipient septin disc-like structures in a pressure-dependent manner, and that this is necessary for their contraction and remodeling into rings. We demonstrate that the structural integrity of these incipient septin discs requires both an intact F-actin and microtubule cytoskeleton and provide fundamental new insight into their functional organization within the appressorium. Lastly, using proximity-dependent labeling, we identify the actin modulator coronin as a septin-proximal protein and show that F-actin-mediated septin disc-to-ring remodeling is perturbed in the genetic absence of coronin. Taken together, our findings provide new insight into the dynamic remodeling of infection-specific higher-order septin structures in a globally significant fungal plant pathogen.


Assuntos
Magnaporthe , Oryza , 4-Butirolactona/análogos & derivados , Actinas/genética , Ascomicetos , Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Septinas/genética , Septinas/metabolismo
3.
Fungal Genet Biol ; 140: 103385, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305452

RESUMO

The rice blast fungus Magnaporthe oryzae differentiates a specialized infection structure called an appressorium, which is used to break into plant cells by directed application of enormous turgor force. Appressorium-mediated plant infection requires timely assembly of a higher-order septin ring structure at the base of the appressorium, which is needed to spatially orchestrate appressorium repolarization. Here we use quantitative 4D widefield fluorescence imaging to gain new insight into the spatiotemporal dynamics of septin ring formation, and septin-mediated actin re-organization, during appressorium morphogenesis by M. oryzae. We anticipate that the new knowledge will provide a quantitative framework for dissecting the molecular mechanisms of higher-order septin ring assembly in this devastating plant pathogenic fungus.


Assuntos
Ascomicetos/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Septinas/ultraestrutura , Citoesqueleto/genética , Citoesqueleto/virologia , Proteínas Fúngicas/genética , Morfogênese/genética , Oryza/crescimento & desenvolvimento , Oryza/virologia , Doenças das Plantas/virologia , Septinas/química , Septinas/genética
4.
Nat Microbiol ; 8(9): 1706-1716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563288

RESUMO

Microbial pathogens deploy effector proteins to manipulate host cell innate immunity, often using poorly understood unconventional secretion routes. Transfer RNA (tRNA) anticodon modifications are universal, but few biological functions are known. Here, in the rice blast fungus Magnaporthe oryzae, we show how unconventional effector secretion depends on tRNA modification and codon usage. We characterized the M. oryzae Uba4-Urm1 sulfur relay system mediating tRNA anticodon wobble uridine 2-thiolation (s2U34), a conserved modification required for efficient decoding of AA-ending cognate codons. Loss of s2U34 abolished the translation of AA-ending codon-rich messenger RNAs encoding unconventionally secreted cytoplasmic effectors, but mRNAs encoding endoplasmic reticulum-Golgi-secreted apoplastic effectors were unaffected. Increasing near-cognate tRNA acceptance, or synonymous AA- to AG-ending codon changes in PWL2, remediated cytoplasmic effector production in Δuba4. In UBA4+, expressing recoded PWL2 caused Pwl2 super-secretion that destabilized the host-fungus interface. Thus, U34 thiolation and codon usage tune pathogen unconventional effector secretion in host rice cells.


Assuntos
Anticódon , Uso do Códon , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon , RNA Mensageiro
5.
Nat Commun ; 14(1): 4146, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438395

RESUMO

The blast fungus Magnaporthe oryzae produces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that the M. oryzae serine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. Deleting RIM15 attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate - via glutaminolysis - to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression.


Assuntos
Ascomicetos , Oryza , Hifas , Ácidos Cetoglutáricos , Autofagia , Proteínas Serina-Treonina Quinases , Glucose
6.
Methods Mol Biol ; 2356: 87-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236679

RESUMO

Fluorescence microscopy has become a widely used and indispensable tool for the M. oryzae research community, providing unique insight into appressorium formation and function. A common practice within the field is to acquire and present images of a number of different conidia, expressing a fluorescent fusion protein of interest, at various stages of infectious development, therein providing a representative "snapshot" of the population at a given point in time. Furthermore, these images typically show only a single focal plane through the specimen (2D) and therefore lack, often valuable, volumetric information. While this approach has its advantages, the continuous imaging of (multiple) single conidia in three dimensions (3D), and over time (4D), can provide additional insight into the spatial and temporal dynamics of fluorescent fusion proteins, and the subcellular structures and compartments they label, in living cells. Here we describe our typical workflow for the 4D live-cell imaging of appressorium morphogenesis in vitro using two-color widefield fluorescence microscopy and briefly outline some important considerations for strain construction, and downstream image processing and visualization.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas , Magnaporthe/genética , Morfogênese , Imagem Óptica , Doenças das Plantas , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA