Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(15): 6055-6064, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569051

RESUMO

While ion current rectification (ICR) in aprotic solvent has been fundamentally studied, its application in sensing devices lacks exploration. The development of sensors operable in these solvents is highly beneficial to the chemical industry, where polar aprotic solvents, such as acetonitrile, are widely used. Currently, this industry relies on the use of inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectroscopy (OES) for the detection of metal contamination in organic products. Herein, we present the detection of trace amounts of Pd2+ and Co2+ using ion current rectification, in cyclam-functionalized quartz nanopipettes, with tetraethylammonium tetrafluoroborate (TEATFB) in MeCN as supporting electrolyte. This methodology is employed to determine the concentration of Pd in organic products, before and after purification by Celite filtration and column chromatography, obtaining comparable results to ICP-MS within minutes and without complex sample preparation. Finite element simulations are used to support our experimental findings, which reveal that the formation of double-junction diodes in the nanopore enables trace detection of these metals, with a significant response from baseline even at picomolar concentrations.

2.
Phys Chem Chem Phys ; 26(21): 15452-15460, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747528

RESUMO

Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and because the thickness of multilayered silanes can cover or block nanoscale features. Furthermore, in electrochemical devices, the silane layers experience additional perturbations, such as electric migration and electroosmotic force. Despite its importance, there appears to be no consensus in the current literature on the optimal methodology for nanopipette silanization, with significant variations in reported conditions. Herein, we systematically investigate the reproducibility and stability of liquid- and vapor-phase deposited silane layers inside nanopipettes. Electrochemical monitoring of the changing internal silanized surface reveals that vapor-deposited APTES generates surface modifications with the highest reproducibility, while vapor-deposited APTMS generates surface modifications of the highest stability over a 24-hour time period. Practical issues of silanizing nanoconfined systems are highlighted, and the importance of carefully chosen silanization conditions to yield stable and reproducible monolayers is emphasized as an underappreciated aspect in the development of novel nanoscale systems.

3.
ACS Mater Lett ; 6(5): 1863-1869, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38726043

RESUMO

The use of sustainable and safe materials is increasingly in demand for the creation of photonic-based technology. Piezoelectric peptide nanotubes make up a class of safe and sustainable materials. We show that these materials can generate piezoelectric charge through the deformation of oriented molecular dipoles when the tube length is flexed through the application of sound energy. Through the combination of peptide nanotubes with plasmon active nanomaterials, harvesting of low-frequency acoustic sound waves was achieved. This effect was applied to boost surface-enhanced Raman scattering signal detection of analytes, including glucose. This work demonstrates the potential of utilizing sound to boost sensing by using piezoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA