RESUMO
Global water scarcity is leading to increasingly tense competition across populations. In order to complement the largely fast-depleting fresh water sources and mitigate the challenges generated by brine discharge from desalination, atmospheric water harvesting (AWH) has emerged to support long-term water supply. This work presents a novel alginate-based hybrid material comprised of porous silico-aluminophosphate-34 (SAPO-34) as fast-transport channel medium as well as hydrophilicity and stability enhancer, and graphene-based sheets as light absorber for solar-enabled evaporation, both optimally incorporated in an alginate matrix, resulting in a composite sorbent capable of harvesting water from the atmosphere with a record intake of up to 6.85 gw gs -1. Natural sunlight is solely used to enable desorption achieving increase of the temperature of the developed network up to 60 °C and resulting in release of the sorbed water, with impurities content well below the World Health Organization (WHO) upper limits. After 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This work provides an impactful perspective toward sustainable generation of water from humidity without external energy consumption supporting the emergence of alternative water production solutions.
RESUMO
Edible films and coatings are eco-friendly promising materials for preserving the quality and extending the shelf life of fresh and minimally-processed fruits. They can form protective layers around fruits, regulate their respiration rates, and protect them from loss of water, tissue softening, browning, and microbial contamination. Edible films and coatings have many advantages over other post-harvest treatments. They can add commercial value to fruits by enhancing their appearance, and act as carriers of functional ingredients, such as antioxidants, antimicrobial agents and nutraceuticals. Mango, a highly perishable tropical fruit, has a short post-harvest life, which limits transport to distant markets. Application of edible films and coatings on mango fruits is an effective method to preserve their quality and safety. This paper provides an overview of desirable properties for films and coatings, and recent development in different edible coatings for both fresh and minimally-processed mango. The most popular edible coating materials, such as chitosan, waxes, starch, gums, and cellulose used for mango are reviewed. The commercialization of coating formulations and equipment used for application of coatings are discussed. The environmental impacts, safety aspects, and the challenges encountered are outlined. The opportunities to use other coating materials, such as aloe-vera gel, microbial polysaccharides, and photosynthetic microorganisms are also examined.
Assuntos
Filmes Comestíveis , Mangifera , Embalagem de Alimentos , Conservação de Alimentos , Frutas , Expectativa de Vida , VerdurasRESUMO
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 µg/L, 2.8 µg/L, 1 µg/L, 0.13 µg/L, 6.0 × 10-5 µg/L, and 4.141 × 10-7 µg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Humanos , Reprodutibilidade dos Testes , Águas Residuárias/análise , Poluentes Químicos da Água/análiseRESUMO
In the past decade, 3D printing technologies have been adopted for the fabrication of microfluidic devices. Extrusion-based approaches including fused filament fabrication (FFF), jetting technologies including inkjet 3D printing, and vat photopolymerization techniques including stereolithography (SLA) and digital light projection (DLP) are the 3D printing methods most frequently adopted by the microfluidic community. Each printing technique has merits toward the fabrication of microfluidic devices. Inkjet printing offers a good selection of materials and multimaterial printing, and the large build space provides manufacturing throughput, while FFF offers a great selection of materials and multimaterial printing but at lower throughput compared to inkjet 3D printing. Technical and material developments adopted from adjacent research fields and developed by the microfluidic community underpin the printing of sub-100 µm enclosed microchannels by DLP, but challenges remain in multimaterial printing throughput. With the feasibility of 3D printed microfluidics established, we look ahead at trends in 3D printing to gain insights toward the future of this technology beyond the sole prism of being an alternative fabrication approach. A shift in emphasis from using 3D printing for prototyping, to mimic conventionally manufactured outputs, toward integrated approaches from a design perspective is critically developed.
RESUMO
Solid-state nanopore technology for nanoparticle sensing is considered for the development of analytical tools to characterise their size, shape or zeta potential. In this field, it is crucial to understand how the nanopore inner surface influences the dynamic of nanoparticle translocation. Here, three single nanopores directly drilled in metal alloys (titanium nitride, titanium-tantalum and tantalum) are considered. The translocation of polystyrene nanoparticles coated with ssDNA is investigated by the resistive pulse method at different concentrations and voltages. The results show that the nanoparticle energy barrier for entrance into the pore decreases for nanopores that exhibits a higher surface energy and hydrophilicity, while the dwell time is found to depend on the nanopore surface state. Overall, this study demonstrates that the control of nanopore surface state must be taken into account for the resistive pulse experiments for nanoparticle detection.
RESUMO
The fundamental understanding of the transport mechanisms of objects across a single nanopore is one key point to develop Coulter counters at the nanoscale for macromolecule or nanoparticle detection. In this area, nanoparticles have been less investigated than biomacromolecules such as DNA or proteins due to their self-aggregation in the presence of salts. In this work, the transport of modified latex nanoparticles across solid-state nanopores was investigated. To prevent their aggregation, their surface was modified with a low molecular weight single strand DNA coating. Then the coated nanoparticles were successfully detected across a single pore material in 200 mM NaCl buffer. The experimental capture rate was compared to that of the predictive model. It reveals that the nanoparticle entrance inside the nanopore is mainly governed by diffusion and required a weak energy. For relative current blockades, the predictive model should take into account both the nanopore shape and the additional charge due to ssDNA coating.
Assuntos
DNA de Cadeia Simples/química , Látex/química , Nanopartículas/química , Nanoporos , Adsorção , DifusãoRESUMO
The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (â¼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.
Assuntos
Nanopartículas/química , Dióxido de Silício/química , Cinética , Tamanho da Partícula , Porosidade , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios XRESUMO
The development of new polymerizable lyotropic liquid crystals (LLCs) utilizing charged amphiphilic molecules such as those based on long chain imidazolium compounds, is a relatively new design direction for producing robust membranes with controllable nano-structures. Here we have developed a novel polymerizable ionic liquid based LLC, 1-hexadecyl-3-methylimidazolium acrylate (C16mimAcr), where the acrylate anion acts as the polymerizable moiety. The phase behaviour of the C16mimAcr upon the addition of water was characterized using small and wide angle X-ray scatterings, differential scanning calorimetry and polarized optical microscopy. We compare the phase behaviour of this new polymerizable LLC to that of the well known LLC chloride analogue, 1-hexadecyl-3-methylimidazolium chloride (C16mimCl). We find that the C16mimAcr system has a more complex phase behaviour compared to the C16mimCl system. Additional lyotropic liquid crystalline mesophases such as hexagonal phase (H1) and discontinuous cubic phase (I1) are observed at 20 °C for the acrylate system at 50 and 65 wt% water respectively. The appearance of the hexagonal phase (H1) and discontinuous cubic phase (I1) for the acrylate system is likely due to the strong hydrating nature of the acrylate anion, which increases the head group area. The formation of these additional mesophases seen for the acrylate system, especially the hexagonal phase (H1), coupled with the polymerization functionality offers great potential in the design of advanced membrane materials with selective and anisotropic transport properties.
Assuntos
Cristais Líquidos/química , Tensoativos/química , Varredura Diferencial de Calorimetria , Íons/síntese química , Íons/química , Microscopia de Polarização , Polimerização , TemperaturaRESUMO
Metal nanoparticles have drawn great interest due to their unique properties for applications in the fields of catalysis, biomedicine and environmental science depending on the architecture of the metal nanoparticle composites. Amongst different designing routes, the chemical template deposition offers great flexibility in terms of the template selection and interfacial interactions, giving rise to controllable designs. In order to control over nanoparticle size distribution and deposition efficiency, a sonochemical approach has been systematically followed in this study. Key parameters of the ultrasound-assisted deposition procedures during the seeding step to synthesise gold nanoparticle-coated poly(styrene) beads were investigated. The impact of the solution pH and the ultrasonic frequency on the template deposition was examined at 139, 300, 500 and 1000 kHz. The results, monitored by transmission electron spectroscopic imaging, show that the highest gold deposition was achieved at 300 kHz, revealing the mechanistic details of the nucleation-crystal growth behaviour as a function of ultrasonic frequency and reaction time. In addition, the concentration ratio between gold ions and poly(styrene) beads was varied. The highest deposition coverage and smallest particle size were reached at 0.05 mM and 2.5 mg, respectively. The proposed mechanism of the MNPs formation and deposition behaviour were then discussed based on the tested parameters.
RESUMO
Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.
RESUMO
Water is readily available nearly anywhere as vapor. Thus, atmospheric water harvesting (AWH) technologies are seen as a promising solution to support sustainable water production. This work reports a novel semi-interpenetrating network, which integrates poly(pyrrole) doped with a hygroscopic salt and 2D graphene-based nanosheets optimally assembled within an alginate matrix, capable of harvesting water from the atmosphere with a record intake of up to 7.15 gw/gs. Owing to the incorporated graphene nanosheets, natural sunlight was solely used to enable desorption, achieving an increase of the temperature of the developed network of up to 71 °C within 20 min, resulting in a water yield of 3.36 L/kgS in each cycle with quality well within the World Health Organization standard ranges. Notably, after 30 cycles of sorption and desorption, the composite hydrogel displayed unchanged water uptake and stability. This study demonstrates that atmospheric water vapor as a complementary source of water can be harvested sustainably and effectively at a minimal cost and without external energy input.
RESUMO
Metal-organic frameworks (MOFs) have emerged as promising candidates for CO2 adsorption due to their ultrahigh-specific surface area and highly tunable pore-surface properties. However, their large-scale application is hindered by processing issues associated with their microcrystalline powder nature, such as dustiness, pressure drop, and poor mass transfer within packed beds. To address these challenges, shaping/structuring micron-sized polycrystalline MOF powders into millimeter-sized structured forms while preserving porosity and functionality represents an effective yet challenging approach. In this study, a facile and versatile strategy was employed to integrate moisture-stable and scalable microcrystalline MOFs (UiO-66 and ZIF-8) into a poly(acrylonitrile) matrix to fabricate readily processable, millimeter-sized hierarchically porous structured adsorbents with ultrahigh MOF loadings (â¼90 wt %) for direct industrial carbon capture applications. These structured composite beads retained the physicochemical properties and separation performance of the pristine MOF crystal particles. Structured UiO-66 and ZIF-8 exhibited high specific surface areas of 1130 m2 g-1 and 1431 m2 g-1, respectively. The structured UiO-66 achieved a CO2 adsorption capacity of 2.0 mmol g-1 at 1 bar and a dynamic CO2/N2 selectivity of 17 for a CO2/N2 gas mixture with a 15/85 volume ratio at 25 °C. Furthermore, the structured adsorbents exhibited excellent cyclability in static and dynamic CO2 adsorption studies, making them promising candidates for practical application.
RESUMO
Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.
Assuntos
Organismos Aquáticos , Peixe-Zebra , Humanos , Animais , Porosidade , Alicerces Teciduais , Impressão TridimensionalRESUMO
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
RESUMO
Given that surface water is the primary supply of drinking water worldwide, the presence of natural organic matter (NOM) in surface water presents difficulties for water treatment facilities. During the disinfection phase of the drinking water treatment process, NOM aids in the creation of toxic disinfection by-products (DBPs). This problem can be effectively solved using the nanofiltration (NF) membrane method, however NOM can significantly foul NF membranes, degrading separation performance and membrane integrity, necessitating the development of fouling-resistant membranes. This review offers a thorough analysis of the removal of NOM by NF along with insights into the operation, mechanisms, fouling, and its controlling variables. In light of engineering materials with distinctive features, the potential of surface-engineered NF membranes is here critically assessed for the impact on the membrane surface, separation, and antifouling qualities. Case studies on surface-engineered NF membranes are critically evaluated, and properties-to-performance connections are established, as well as challenges, trends, and predictions for the field's future. The effect of alteration on surface properties, interactions with solutes and foulants, and applications in water treatment are all examined in detail. Engineered NF membranes containing zwitterionic polymers have the greatest potential to improve membrane permeance, selectivity, stability, and antifouling performance. To support commercial applications, however, difficulties related to material production, modification techniques, and long-term stability must be solved promptly. Fouling resistant NF membrane development would be critical not only for the water treatment industry, but also for a wide range of developing applications in gas and liquid separations.
Assuntos
Água Potável , Purificação da Água , Membranas Artificiais , Ultrafiltração/métodos , Purificação da Água/métodos , DesinfecçãoRESUMO
The distinctive cage-like structure of polyhedral oligomeric silsesquioxane (POSS) materials makes them highly effective fillers in composite membranes for separation applications. However, realizing their full potential in the application often requires specific surface functionalization with various groups. However, this requirement remains challenging owing to the limitations of wet-chemistry approaches, which frequently result in the generation of hazardous chemical by-products. In this paper, a "green" stirring plasma strategy is presented for the functionalization of octa-methyl POSS sub-micron particles into designable oxygen-containing functional groups using a low-pressure oxygen plasma from combined continuous wave and pulsed (CW+P) modes. Plasma from oxygen gas with CW mode offers highly oxygen-reactive species to continuously etch and activate the surface of the POSS. The resulting pulsed plasma assists in grafting more reactive oxygen species onto the active methyl groups of the POSS to form specific oxygen-containing functional groups including hydroxyl and carboxyl. A precise control of nearly one hydroxyl or one carboxyl group at the corner of the cage structure of the POSS is demonstrated, without damaging the core. Therefore, the plasma process discussed in this work is suggested by the authors as controllable fundamental research for the surface functionalization of sub-micron particles, promoting a more environmentally friendly pathway for the preparation of designable fillers.
RESUMO
Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to â¼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to â¼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.
RESUMO
3D printing is established as an alternative microfabrication approach, and while printer resolution limits the direct 3D printing of pore features in the micron/submicron range, the use of nanoporous materials allows for the integration of porous membranes in 3D printed devices. Here, nanoporous membranes were formed by digital light projection (DLP) 3D printing using a polymerization-induced phase separation (PIPS) resin formulation. A functionally integrated device was fabricated using resin exchange following a simple, semi-automated manufacturing process. Printing of porous materials from a PIPS resin formulations based on polyethylene glycol diacrylate 250 as monomer was investigated by varying exposure time, photoinitiator concentration, and porogen content to yield materials with average pore size varying from 30-800 nm. Aiming for printing a size-mobility trap for electrophoretic extraction of deoxyribonucleic acid (DNA), conditions for printing materials with a mean pore size of 346 nm and 30 nm were selected for integration in a fluidic device using a resin exchange approach. Under optimized conditions (12.5 V for 20 min), cell concentrations as low as 103 cells per mL were detected following amplification of the extract by quantitative polymerase chain reaction (qPCR) at a Cq of 29. The efficacy of the size/mobility trap formed by the two membranes is demonstrated by detecting DNA concentrations equivalent to the input detected in the extract while removing 73% of the protein in the lysate. The DNA extraction yield was not statistically different from that obtained using a spin column, but manual handling and equipment needs were significantly reduced. This study demonstrates that nanoporous membranes with tailored properties can be integrated into fluidic devices using a simple manufacturing process based on resin exchange DLP. The process was used to manufacture a size-mobility trap and applied for the electroextraction and purification of DNA from E. coli lysate with reduced processing time, manual handling, and equipment needs compared with a commercially sourced DNA extraction kit. Combining manufacturability and portability with ease of use, the approach has demonstrated potential for manufacturing and using devices used in point-of-need testing for diagnostic nucleic acid amplification testing.
Assuntos
Escherichia coli , Nanoporos , Impressão Tridimensional , Técnicas de Amplificação de Ácido Nucleico , DNARESUMO
Wastewater treatment plants (WWTPs) are key components for the capture of microplastics (MPs) before they are released into natural waterways. Removal efficiencies as high as 99% may be achieved but sub-micron MPs as well as nanoplastics have been overlooked because of analytical limitations. Furthermore, short MP fibres are of concern because of their low capture rate as well as the lack of understanding of their influence on purification system efficiency. This study has investigated the impact of poly(ethylene terephthalate) (PET) short nanofibres on the performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes during cross-flow operation. Model MP fibres with an average length of 10 ± 7 µm and a diameter of 142 ± 40 nm were prepared via a combination of electrospinning and fine cutting using a cryomicrotome. The manufactured MPs were added to both pure and synthetic domestic wastewater at a concentration of 1 mg.L-1 to determine their impact on the performance of PVDF ultrafiltration membranes. The results show that PET fibres attach to the membrane in a disorganised manner with low pore coverage. The water flux was decreased by 8% for MPs in pure water and no noticeable effect in wastewater after 3 days of filtration. Additionally, the nutrient removal efficiency of the membrane was not altered by the presence of PET MPs. These findings show that MP fibres do not significantly influence the early stages of filtration for a standard concentration of MPs in wastewater treatment plant studies.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Águas Residuárias , Ultrafiltração , Poluentes Químicos da Água/análise , ÁguaRESUMO
The selection and engineering of materials is a critical component towards the development of a circular economy model. The redesign of both consumer commodity goods and advanced products may not only require engineering feats in terms of advanced structures but also the implementation of safer and more facile to recycle materials. Although such endeavours include the engineering of goods generated from clever components assemblies, easier to dismantle and separate, new avenues to move beyond planned obsolescence towards triggered obsolescence, whereby materials may degrade on command, is required. Circular Materials must be designed to enable complete recycling of materials and novel synthesis strategies free from toxic precursors or by-products to regenerate raw materials. Circular materials shall therefore be processed first at the local level for local needs. Key supply-chain challenges arising from the COVID-19 lockdowns have further stressed the relevance of this issue and the need to have develop well dispatched geographically manufacturing hubs. Changes towards Circular Materials considerations will depend on the development of repurposing and recycling platforms as well as from the rebirth of delocalized manufacturing capabilities. This chapter will present current solutions to develop sustainable materials engineering strategies and focus on greener fabrication and recycling routes. Focus on smarter designs and life-cycle analysis will reflect on how Circular Design of materials may contribute to the Circular Economy.