RESUMO
In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Camundongos , Animais , Klebsiella pneumoniae/genética , Antígeno B7-H1 , Macrófagos Alveolares , Pulmão , Macrófagos , Infecções por Klebsiella/microbiologiaRESUMO
The core of biomedical science is the use of laboratory techniques to support the diagnosis and treatment of disease in clinical settings. Despite tremendous advancement in our understanding of medicine in recent years, we are still far from having a complete understanding of human physiology in homeostasis, let alone the pathology of disease states. Indeed medical advances over the last two hundred years would not have been possible without the invention of and continuous development of visualisation techniques available to research scientists and clinicians. As we have all learned from the recent COVID pandemic, despite advances in modern medicine we still have much to learn regarding infection biology. Indeed antimicrobial resistant (AMR) bacteria are a global threat to human health, meaning research into bacterial pathogenesis is vital. In this chapter, we will briefly describe the nature of microbes and host immune responses before delving into some of the visualisation techniques utilised in the field of biomedical research with a focus on host-pathogen interactions. We will give a brief overview of commonly used techniques from gold standard staining methods, in situ hybridisation, microscopy, western blotting, microbial characterisation, to cutting-edge image flow cytometry and mass spectrometry. Specifically, we will focus on techniques utilised to visualise interactions between the host, our own bodies, and invading organisms including bacteria. We will touch on in vitro and ex vivo modelling methodology with examples utilised to delineate pathogenicity in disease. A better understanding of bacterial biology, immunology and how these fields interact (host-pathogen communications) in biomedical research is integral to developing novel therapeutic approaches which circumvent the need for antibiotics, an important issue as we enter a post-antibiotic era.
Assuntos
COVID-19 , Humanos , Bactérias , Interações Hospedeiro-Patógeno , AntibacterianosRESUMO
Klebsiella pneumoniae is a significant cause of nosocomial pneumonia and an alarming pathogen owing to the recent isolation of multidrug resistant strains. Understanding of immune responses orchestrating K. pneumoniae clearance by the host is of utmost importance. Here we show that type I interferon (IFN) signaling protects against lung infection with K. pneumoniae by launching bacterial growth-controlling interactions between alveolar macrophages and natural killer (NK) cells. Type I IFNs are important but disparate and incompletely understood regulators of defense against bacterial infections. Type I IFN receptor 1 (Ifnar1)-deficient mice infected with K. pneumoniae failed to activate NK cell-derived IFN-γ production. IFN-γ was required for bactericidal action and the production of the NK cell response-amplifying IL-12 and CXCL10 by alveolar macrophages. Bacterial clearance and NK cell IFN-γ were rescued in Ifnar1-deficient hosts by Ifnar1-proficient NK cells. Consistently, type I IFN signaling in myeloid cells including alveolar macrophages, monocytes and neutrophils was dispensable for host defense and IFN-γ activation. The failure of Ifnar1-deficient hosts to initiate a defense-promoting crosstalk between alveolar macrophages and NK cell was circumvented by administration of exogenous IFN-γ which restored endogenous IFN-γ production and restricted bacterial growth. These data identify NK cell-intrinsic type I IFN signaling as essential driver of K. pneumoniae clearance, and reveal specific targets for future therapeutic exploitations.
Assuntos
Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Infecções por Klebsiella/imunologia , Macrófagos Alveolares/imunologia , Transdução de Sinais/imunologia , Animais , Resistência a Múltiplos Medicamentos/imunologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Cross-Talk/imunologia , Infecções Respiratórias/imunologiaRESUMO
INTRODUCTION: Bacteria have been extensively implicated in the development of smoking related diseases, such as COPD, by either direct infection or bacteria-mediated inflammation. In response to the health risks associated with tobacco exposure, the use of electronic cigarettes (e-cigs) has increased. This study compared the effect of e-cig vapour (ECV) and cigarette smoke (CSE) on the virulence and inflammatory potential of key lung pathogens (Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa). METHODS: Biofilm formation, virulence in the Galleria mellonella infection model, antibiotic susceptibility and IL-8/TNF-α production in A549 cells, were compared between bacteria exposed to ECV, CSE and non-exposed bacteria. RESULTS: Statistically significant increases in biofilm and cytokine secretion were observed following bacterial exposure to either ECV or CSE, compared to non-exposed bacteria; the effect of exposure to ECV on bacterial phenotype and virulence was comparable, and in some cases greater, than that observed following CSE exposure. Treatment of A549 cells with cell signaling pathway inhibitors prior to infection, did not suggest that alternative signaling pathways were being activated following exposure of bacteria to either ECV or CSE. CONCLUSIONS: These findings therefore suggest that ECV and CSE can induce changes in phenotype and virulence of key lung pathogens, which may increase bacterial persistence and inflammatory potential.
Assuntos
Biofilmes/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Haemophilus influenzae/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotiana/efeitos adversos , Pneumonia Bacteriana/induzido quimicamente , Pseudomonas aeruginosa/efeitos dos fármacos , Fumaça/efeitos adversos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Células A549 , Animais , Biofilmes/crescimento & desenvolvimento , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/patogenicidade , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Larva/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Mariposas/embriologia , Mariposas/microbiologia , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , VirulênciaRESUMO
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/enzimologia , Lipídeo A/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Lepidópteros , Macrófagos/microbiologia , Espectrometria de Massas , Camundongos , Fagocitose , VirulênciaRESUMO
Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Animais , Camundongos , Trato Gastrointestinal/patologia , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologia , InflamaçãoRESUMO
PYHIN proteins AIM2 and IFI204 sense pathogen DNA, while other PYHINs have been shown to regulate host gene expression through as-yet unclear mechanisms. We characterize mouse PYHIN IFI207, which we find is not involved in DNA sensing but rather is required for cytokine promoter induction in macrophages. IFI207 co-localizes with both active RNA polymerase II (RNA Pol II) and IRF7 in the nucleus and enhances IRF7-dependent gene promoter induction. Generation of Ifi207-/- mice shows no role for IFI207 in autoimmunity. Rather, IFI207 is required for the establishment of a Klebsiella pneumoniae lung infection and for Klebsiella macrophage phagocytosis. These insights into IFI207 function illustrate that PYHINs can have distinct roles in innate immunity independent of DNA sensing and highlight the need to better characterize the whole mouse locus, one gene at a time.
Assuntos
Citocinas , Klebsiella pneumoniae , Camundongos , Animais , Klebsiella pneumoniae/genética , Proteínas Nucleares/metabolismo , Imunidade Inata , DNARESUMO
The strategies deployed by antibiotic-resistant bacteria to counteract host defences are poorly understood. Here, we elucidate a novel host-pathogen interaction resulting in skewing lung macrophage polarisation by the human pathogen Klebsiella pneumoniae. We identify interstitial macrophages (IMs) as the main population of lung macrophages associated with Klebsiella. Single-cell transcriptomics and trajectory analysis of cells reveal type I IFN and IL10 signalling, and macrophage polarisation are characteristic of infected IMs, whereas Toll-like receptor (TLR) and Nod-like receptor signalling are features of infected alveolar macrophages. Klebsiella-induced macrophage polarisation is a singular M2-type we termed M(Kp). To rewire macrophages, Klebsiella hijacks a TLR-type I IFN-IL10-STAT6 axis. Absence of STAT6 limits Klebsiella intracellular survival and facilitates the clearance of the pathogen in vivo. Glycolysis characterises M(Kp) metabolism, and inhibition of glycolysis results in clearance of intracellular Klebsiella. Capsule polysaccharide governs M(Kp). Klebsiella also skews human macrophage polarisation towards M(Kp) in a type I IFN-IL10-STAT6-dependent manner. Klebsiella induction of M(Kp) represents a novel strategy to overcome host restriction, and identifies STAT6 as target to boost defences against Klebsiella.
Assuntos
Klebsiella pneumoniae , Macrófagos Alveolares , Humanos , PulmãoRESUMO
Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1ß production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto , Humanos , Inflamação , Camundongos , Transdução de SinaisRESUMO
Bloodstream infections caused by nontyphoidal Salmonella are a major public health concern in Africa, causing ~49,600 deaths every year. The most common Salmonella enterica pathovariant associated with invasive nontyphoidal Salmonella disease is Salmonella Typhimurium sequence type (ST)313. It has been proposed that antimicrobial resistance and genome degradation has contributed to the success of ST313 lineages in Africa, but the evolutionary trajectory of such changes was unclear. Here, to define the evolutionary dynamics of ST313, we sub-sampled from two comprehensive collections of Salmonella isolates from African patients with bloodstream infections, spanning 1966 to 2018. The resulting 680 genome sequences led to the discovery of a pan-susceptible ST313 lineage (ST313 L3), which emerged in Malawi in 2016 and is closely related to ST313 variants that cause gastrointestinal disease in the United Kingdom and Brazil. Genomic analysis revealed degradation events in important virulence genes in ST313 L3, which had not occurred in other ST313 lineages. Despite arising only recently in the clinic, ST313 L3 is a phylogenetic intermediate between ST313 L1 and L2, with a characteristic accessory genome. Our in-depth genotypic and phenotypic characterization identifies the crucial loss-of-function genetic events that occurred during the stepwise evolution of invasive S. Typhimurium across Africa.
Assuntos
Evolução Molecular , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Sepse/microbiologia , África/epidemiologia , Farmacorresistência Bacteriana , Variação Genética , Genoma Bacteriano/genética , Genótipo , Humanos , Fenótipo , Filogenia , Plasmídeos/genética , Pseudogenes , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Sepse/epidemiologia , Sepse/transmissão , VirulênciaRESUMO
Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Understanding the virulence mechanisms of K. pneumoniae is a priority and timely to design new therapeutics. Here, we demonstrate that K. pneumoniae limits the SUMOylation of host proteins in epithelial cells and macrophages (mouse and human) to subvert cell innate immunity. Mechanistically, in lung epithelial cells, Klebsiella increases the levels of the deSUMOylase SENP2 in the cytosol by affecting its K48 ubiquitylation and its subsequent degradation by the ubiquitin proteasome. This is dependent on Klebsiella preventing the NEDDylation of the Cullin-1 subunit of the ubiquitin ligase complex E3-SCF-ßTrCP by exploiting the CSN5 deNEDDylase. Klebsiella induces the expression of CSN5 in an epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-extracellular signal-regulated kinase (ERK)-glycogen synthase kinase 3 beta (GSK3ß) signaling pathway-dependent manner. In macrophages, Toll-like receptor 4 (TLR4)-TRAM-TRIF-induced type I interferon (IFN) via IFN receptor 1 (IFNAR1)-controlled signaling mediates Klebsiella-triggered decrease in the levels of SUMOylation via let-7 microRNAs (miRNAs). Our results revealed the crucial role played by Klebsiella polysaccharides, the capsule, and the lipopolysaccharide (LPS) O-polysaccharide, to decrease the levels of SUMO-conjugated proteins in epithelial cells and macrophages. A Klebsiella-induced decrease in SUMOylation promotes infection by limiting the activation of inflammatory responses and increasing intracellular survival in macrophages.IMPORTANCEKlebsiella pneumoniae has been singled out as an urgent threat to human health due to the increasing isolation of strains resistant to "last-line" antimicrobials, narrowing the treatment options against Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug-resistant Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Furthermore, there is still limited evidence on K. pneumoniae pathogenesis at the molecular and cellular levels in the context of the interactions between bacterial pathogens and their hosts. In this research, we have uncovered a sophisticated strategy employed by Klebsiella to subvert the activation of immune defenses by controlling the modification of proteins. Our research may open opportunities to develop new therapeutics based on counteracting this Klebsiella-controlled immune evasion strategy.
Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Imunidade Inata , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/metabolismo , Sumoilação , Células A549 , Animais , Feminino , Humanos , Interferon Tipo I/imunologia , Infecções por Klebsiella/microbiologia , Pulmão/microbiologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologiaRESUMO
The use of animal infection models is essential to understand microbial pathogenesis and to develop and test treatments. Insects and two-dimensional (2D) and 3D tissue models are increasingly being used as surrogates for mammalian models. However, there are concerns about whether these models recapitulate the complexity of host-pathogen interactions. In this study, we developed the ex vivo lung perfusion (EVLP) model of infection using porcine lungs to investigate Klebsiella pneumoniae-triggered pneumonia as a model of respiratory infections. The porcine EVLP model recapitulates features of K. pneumoniae-induced pneumonia lung injury. This model is also useful to assess the pathogenic potential of K. pneumoniae, as we observed that the attenuated Klebsiella capsule mutant strain caused less pathological tissue damage with a concomitant decrease in the bacterial burden compared to that in lungs infected with the wild type. The porcine EVLP model allows assessment of inflammatory responses following infection; similar to the case with the mouse pneumonia model, we observed an increase of il-10 in the lungs infected with the wild type and an increase of ifn-γ in lungs infected with the capsule mutant. This model also allows monitoring of phenotypes at the single-cell level. Wild-type K. pneumoniae skews macrophages toward an M2-like state. In vitro experiments probing pig bone marrow-derived macrophages uncovered the role for the M2 transcriptional factor STAT6 and that Klebsiella-induced il-10 expression is controlled by p38 and extracellular signal-regulated kinase (ERK). Klebsiella-induced macrophage polarization is dependent on the capsule. Together, the findings of this study support the utility of the EVLP model using pig lungs as a platform to investigate the infection biology of respiratory pathogens.IMPORTANCE The implementation of infection models that approximate human disease is essential to understand infections and for testing new therapies before they enter into clinical stages. Rodents are used in most preclinical studies, although the differences between mice and humans have fueled the conclusion that murine studies are unreliable predictors of human outcomes. In this study, we have developed a whole-lung porcine model of infection using the ex vivo lung perfusion (EVLP) system established to recondition human lungs for transplant. As a proof of principle, we provide evidence demonstrating that infection of the porcine EVLP with the human pathogen Klebsiella pneumoniae recapitulates the known features of Klebsiella-triggered pneumonia. Moreover, our data revealed that the porcine EVLP model is useful to reveal features of the virulence of K. pneumoniae, including the manipulation of immune cells. Together, the findings of this study support the utility of the EVLP model using pig lungs as a surrogate host for assessing respiratory infections.
Assuntos
Pulmão/microbiologia , Pulmão/patologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Animais , Modelos Animais de Doenças , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/patogenicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/microbiologia , Macrófagos/patologia , SuínosRESUMO
Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K. pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K. pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence.
Assuntos
Farmacorresistência Bacteriana , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Carga Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Modelos Animais de Doenças , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Lepidópteros , Lipídeo A/química , Pulmão/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Polimixinas/farmacologia , Análise de Sobrevida , VirulênciaRESUMO
Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.