Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850509

RESUMO

(1) Background: Transition to smart cities involves many actions in different fields of activity, such as economy, environment, energy, government, education, living and health, safety and security, and mobility. Environment and mobility are very important in terms of ensuring a good living in urban areas. Considering such arguments, this paper proposes monitoring and mapping of a 3D traffic-generated urban noise emissions using a simple, UAV-based, and low-cost solution. (2) Methods: The collection of relevant sound recordings is performed via a UAV-borne set of microphones, designed in a specific array configuration. Post-measurement data processing is performed to filter unwanted sound and vibrations produced by the UAV rotors. Collected noise information is location- and altitude-labeled to ensure a relevant 3D profile of data. (3) Results: Field measurements of sound levels in different directions and altitudes are presented in the paperwork. (4) Conclusions: The solution of employing UAV for environmental noise mapping results in being minimally invasive, low-cost, and effective in terms of rapidly producing environmental noise pollution maps for reports and future improvements in road infrastructure.

2.
Sensors (Basel) ; 21(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696089

RESUMO

This article presents the research and results of field tests and simulations regarding an autonomous/robotic railway vehicle, designed to collect multiple information on safety and functional parameters of a surface railway and/or subway section, based on data fusion and machine learning. The maintenance of complex railways, or subway networks with long operating times is a difficult process and intensive resources consuming. The proposed solution delivers human operators in the fault management service and operations from the time-consuming task of railway inspection and measurements, by integrating several sensors and collecting most relevant information on railway, associated automation equipment and infrastructure on a single intelligent platform. The robotic cart integrates autonomy, remote sensing, artificial intelligence, and ability to detect even infrastructural anomalies. Moreover, via a future process of complex statistical filtering of data, it is foreseen that the solution might be configured to offer second-order information about infrastructure changes, such as land sliding, water flooding, or similar modifications. Results of simulations and field tests show the ability of the platform to integrate several fault management operations in a single process, useful in increasing railway capacity and resilience.


Assuntos
Ferrovias , Procedimentos Cirúrgicos Robóticos , Inteligência Artificial , Automação , Humanos , Aprendizado de Máquina
3.
Sensors (Basel) ; 21(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960361

RESUMO

BACKGROUND: The growth of the number of vehicles in traffic has led to an exponential increase in the number of road accidents with many negative consequences, such as loss of lives and pollution. METHODS: This article focuses on using a new technology in automotive electronics by equipping a semi-autonomous vehicle with a complex sensor structure that is able to provide centralized information regarding the physiological signals (Electro encephalogram-EEG, electrocardiogram-ECG) of the driver/passengers and their location along with indoor temperature changes, employing the Internet of Things (IoT) technology. Thus, transforming the vehicle into a mobile sensor connected to the internet will help highlight and create a new perspective on the cognitive and physiological conditions of passengers, which is useful for specific applications, such as health management and a more effective intervention in case of road accidents. These sensor structures mounted in vehicles will allow for a higher detection rate of potential dangers in real time. The approach uses detection, recording, and transmission of relevant health information in the event of an incident as support for e-Call or other emergency services, including telemedicine. RESULTS: The novelty of the research is based on the design of specialized non-invasive sensors for the acquisition of EEG and ECG signals installed in the headrest and backrest of car seats, on the algorithms used for data analysis and fusion, but also on the implementation of an IoT temperature measurement system in several points that simultaneously uses sensors based on MEMS technology. The solution can also be integrated with an e-Call system for telemedicine emergency assistance. CONCLUSION: The research presents both positive and negative results of field experiments, with possible further developments. In this context, the solution has been developed based on state-of-the-art technical devices, methods, and technologies for monitoring vital functions of the driver/passengers (degree of fatigue, cognitive state, heart rate, blood pressure). The purpose is to reduce the risk of accidents for semi-autonomous vehicles and to also monitor the condition of passengers in the case of autonomous vehicles for providing first aid in a timely manner. Reported abnormal values of vital parameters (critical situations) will allow interveneing in a timely manner, saving the patient's life, with the support of the e-Call system.


Assuntos
Veículos Autônomos , Internet das Coisas , Acidentes de Trânsito/prevenção & controle , Algoritmos , Humanos , Monitorização Fisiológica
4.
Sensors (Basel) ; 21(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34372272

RESUMO

The article presents a research in the field of complex sensing, detection, and recovery of communications networks applications and hardware, in case of failures, maloperations, or unauthorized intrusions. A case study, based on Davis AI engine operation versus human maintenance operation is performed on the efficiency of artificial intelligence agents in detecting faulty operation, in the context of growing complexity of communications networks, and the perspective of future development of internet of things, big data, smart cities, and connected vehicles. (*). In the second part of the article, a new solution is proposed for the detection of applications faults or unauthorized intrusions in traffic of communications networks. The first objective of the proposed method is to propose an approach for predicting time series. This approach is based on a multi-resolution decomposition of the signals employing the undecimate wavelet transform (UWT). The second approach for assessing traffic flow is based on the analysis of long-range dependence (LRD) (for this case, a long-term dependence). Estimating the degree of long-range dependence is performed by estimating the Hurst parameter of the analyzed time series. This is a relatively new statistical concept in communications traffic analysis and can be implemented using UWT. This property has important implications for network performance, design, and sizing. The presence of long-range dependency in network traffic is assumed to have a significant impact on network performance, and the occurrence of LRD can be the result of faults that occur during certain periods. The strategy chosen for this purpose is based on long-term dependence on traffic, and for the prediction of faults occurrence, a predictive control model (MPC) is proposed, combined with a neural network with radial function (RBF). It is demonstrated via simulations that, in the case of communications traffic, time location is the most important feature of the proposed algorithm.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Big Data , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA