Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Protoc ; 3(12): e948, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38148714

RESUMO

The patterning of excitatory cortical neurons from human pluripotent stem cells (hPSCs) is a desired technique for the study of neurodevelopmental disorders, as neurons can be created and compared from control hPSC lines, hPSC lines generated from patients, and CRISPR-modified hPSC lines. Therefore, this technique allows for the examination of disease phenotypes and assists in the development of potential new therapeutics for neurodevelopmental disorders. Many protocols, however, are optimized for use with specific hPSC lines or within a single laboratory, and they often provide insufficient guidance on how to identify positive stages in the differentiation or how to troubleshoot. Here, we present an efficient and reproducible directed differentiation protocol to generate two-dimensional cultures of hPSC-derived excitatory cortical neurons without intermediary embryoid body formation. This novel protocol is supported by our data generated with five independent hPSC lines and in two independent laboratories. Importantly, as neuronal differentiations follow a long time course to reach maturity, we provide extensive guidance regarding morphological and flow cytometry checkpoints allowing for early indications of successful differentiation. We also include extensive troubleshooting tips and support protocols to assist the operator. The goal of this protocol is to assist others in the successful differentiation of excitatory cortical neurons from hPSCs. © 2023 Wiley Periodicals LLC. Basic Protocol: Directed differentiation of hPSCs into excitatory cortical neurons Support Protocol 1: Harvesting and fixing cells for flow cytometry analyses Support Protocol 2: Performing flow cytometry analyses Support Protocol 3: Thawing NPCs from a cryopreserved stock Alternate Protocol 1: Continuing Expansion of NPCs Alternate Protocol 2: Treatment of neurons with Ara-C to ablate radial glia Support Protocol 4: Experimental methods for validation of excitatory cortical neurons.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/fisiologia , Neurônios/fisiologia , Diferenciação Celular/fisiologia , Corpos Embrioides
2.
Stem Cell Res ; 71: 103161, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422949

RESUMO

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 (TPM1) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tropomiosina , Humanos , Tropomiosina/genética , Tropomiosina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular Tumoral
3.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205377

RESUMO

The CHOPWT17_TPM1KOc28 iPSC line was generated to interrogate the functions of Tropomyosin 1 ( TPM1 ) in primary human cell development. This line was reprogrammed from a previously published wild type control iPSC line.

4.
Nat Commun ; 14(1): 2628, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149717

RESUMO

Alternative splicing of neuronal genes is controlled partly by the coordinated action of polypyrimidine tract binding proteins (PTBPs). While PTBP1 is ubiquitously expressed, PTBP2 is predominantly neuronal. Here, we define the PTBP2 footprint in the human transcriptome using brain tissue and human induced pluripotent stem cell-derived neurons (iPSC-neurons). We map PTBP2 binding sites, characterize PTBP2-dependent alternative splicing events, and identify novel PTBP2 targets including SYNGAP1, a synaptic gene whose loss-of-function leads to a complex neurodevelopmental disorder. We find that PTBP2 binding to SYNGAP1 mRNA promotes alternative splicing and nonsense-mediated decay, and that antisense oligonucleotides (ASOs) that disrupt PTBP binding redirect splicing and increase SYNGAP1 mRNA and protein expression. In SYNGAP1 haploinsufficient iPSC-neurons generated from two patients, we show that PTBP2-targeting ASOs partially restore SYNGAP1 expression. Our data comprehensively map PTBP2-dependent alternative splicing in human neurons and cerebral cortex, guiding development of novel therapeutic tools to benefit neurodevelopmental disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Splicing de RNA , Processamento Alternativo/genética , Encéfalo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA