RESUMO
The 2017 Global Initiative for Chronic Obstructive Lung Disease guidelines for the evaluation and management of chronic obstructive pulmonary disease revise the assessment tool used to evaluate patients, implement a new pharmacologic algorithm focusing on escalation/de-escalation therapy, and recommend new combination inhaled medications. The guidelines also address nonpharmacologic treatments and the importance of identifying and properly managing comorbidities. This article highlights these important changes to clinical practice.
Assuntos
Guias de Prática Clínica como Assunto , Doença Pulmonar Obstrutiva Crônica/terapia , Administração por Inalação , Agonistas Adrenérgicos beta/administração & dosagem , Algoritmos , Broncodilatadores/administração & dosagem , Comorbidade , Preparações de Ação Retardada , Diagnóstico Diferencial , Progressão da Doença , Monitoramento de Medicamentos , Quimioterapia Combinada , Exercício Físico , Terapia por Exercício , Humanos , Antagonistas Muscarínicos/administração & dosagem , Apoio Nutricional , Oxigenoterapia , Educação de Pacientes como Assunto , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Medição de Risco , Abandono do Hábito de FumarRESUMO
BACKGROUND & AIMS: Nutrition may be important for recovery from critical illness. Gastrointestinal dysfunction is a key barrier to nutrition delivery in the Intensive Care Unit (ICU) and metabolic rate is elevated exacerbating nutritional deficits. Whether these factors persist following ICU discharge is unknown. We assessed whether delayed gastric emptying (GE) and impaired glucose absorption persist post-ICU discharge. METHODS: A prospective observational study was conducted in mechanically ventilated adults at 3 time-points: in ICU (V1); on the post-ICU ward (V2); and 3-months after ICU discharge (V3); and compared to age-matched healthy volunteers. On each visit, all participants received a test-meal containing 100 ml of 1 kcal/ml liquid nutrient, labelled with 0.1 g 13C-octanoic acid and 3 g 3-O-Methyl-glucose (3-OMG), and breath and blood samples were collected over 240min to quantify GE (gastric emptying coefficient (GEC)), and glucose absorption (3-OMG concentration; area under the curve (AUC)). Data are mean ± standard error of the mean (SEM) and differences shown with 95% confidence intervals (95%CI). RESULTS: Twenty-six critically ill patients completed V1 (M:F 20:6; 62.0 ± 2.9 y; BMI 29.8 ± 1.2 kg/m2; APACHE II 19.7 ± 1.9), 15 completed V2 and eight completed V3; and were compared to 10 healthy volunteers (M:F 6:4; 60.5 ± 7.5 y; BMI 26.0 ± 1.0 kg/m2). GE was significantly slower on V1 compared to health (GEC difference: -0.96 (95%CI -1.61, -0.31); and compared to V2 (-0.73 (-1.16, -0.31) and V3 (-1.03 (-1.47, -0.59). GE at V2 and V3 were not different to that in health (V2: -0.23 (-0.61, 0.14); V3: 0.10 (-0.27, 0.46)). GEC: V1: 2.64 ± 0.19; V2: 3.37 ± 0.12; V3: 3.67 ± 0.10; health: 3.60 ± 0.13. Glucose absorption (3-OMG AUC0-240) was impaired on V1 compared to V2 (-37.9 (-64.2, -11.6)), and faster on V3 than in health (21.8 (0.14, 43.4) but absorption at V2 and V3 did not differ from health. Intestinal glucose absorption: V1: 63.8 ± 10.4; V2: 101.7 ± 7.0; V3: 111.9 ± 9.7; health: 90.7 ± 3.8. CONCLUSION: This study suggests that delayed GE and impaired intestinal glucose absorption recovers rapidly post-ICU. This requires further confirmation in a larger population. The REINSTATE trial was prospectively registered at www.anzctr.org.au. TRIAL ID: ACTRN12618000370202.