Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 37(3): 277-289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148279

RESUMO

The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Populus , Nicotiana/genética , Basidiomycota/genética , Transcriptoma , Plastídeos , Populus/genética , Populus/microbiologia , Doenças das Plantas/microbiologia
2.
J Exp Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981015

RESUMO

Phytocytokines regulate plant immunity by cooperating with cell-surface proteins. Populus trichocarpa RUST INDUCED SECRETED PEPTIDE 1 (PtRISP1) exhibits an elicitor activity in poplar, as well as a direct antimicrobial activity against rust fungi. PtRISP1 gene directly clusters with a gene encoding a leucine-rich repeat receptor protein (LRR-RP), that we termed RISP-ASSOCIATED LRR-RP (PtRALR). In this study, we used phylogenomics to characterize the RISP and RALR gene families, and molecular physiology assays to functionally characterize RISP/RALR pairs. Both RISP and RALR gene families specifically evolved in Salicaceae species (poplar and willow), and systematically cluster in the genomes. Despite a low sequence identity, Salix purpurea RISP1 (SpRISP1) shows properties and activities similar to PtRISP1. Both PtRISP1 and SpRISP1 induced a reactive oxygen species (ROS) burst and mitogen-activated protein kinases (MAPKs) phosphorylation in Nicotiana benthamiana leaves expressing the respective clustered RALR. PtRISP1 also triggers a rapid stomatal closure in poplar. Altogether, these results suggest that plants evolved phytocytokines with direct antimicrobial activities, and that the genes coding these phytocytokines co-evolved and physically cluster with genes coding LRR-RPs required to initiate immune signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA