Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419048

RESUMO

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Assuntos
Carboxiliases , Cinamatos , Pseudomonas putida , Estireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Pseudomonas putida/metabolismo , Fenilalanina/metabolismo
2.
Microb Cell Fact ; 22(1): 22, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732770

RESUMO

Pseudomonas putida DOT-T1E is a highly solvent tolerant strain for which many genetic tools have been developed. The strain represents a promising candidate host for the synthesis of aromatic compounds-opening a path towards a green alternative to petrol-derived chemicals. We have engineered this strain to produce phenylalanine, which can then be used as a raw material for the synthesis of styrene via trans-cinnamic acid. To understand the response of this strain to the bioproducts of interest, we have analyzed the in-depth physiological and genetic response of the strain to these compounds. We found that in response to the exposure to the toxic compounds that the strain can produce, the cell launches a multifactorial response to enhance membrane impermeabilization. This process occurs via the activation of a cis to trans isomerase that converts cis unsaturated fatty acids to their corresponding trans isomers. In addition, the bacterial cells initiate a stress response program that involves the synthesis of a number of chaperones and ROS removing enzymes, such as peroxidases and superoxide dismutases. The strain also responds by enhancing the metabolism of glucose through the specific induction of the glucose phosphorylative pathway, Entner-Doudoroff enzymes, Krebs cycle enzymes and Nuo. In step with these changes, the cells induce two efflux pumps to extrude the toxic chemicals. Through analyzing a wide collection of efflux pump mutants, we found that the most relevant pump is TtgGHI, which is controlled by the TtgV regulator.


Assuntos
Hidrocarbonetos Aromáticos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Açúcares/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Solventes/metabolismo , Glucose/metabolismo
3.
Environ Microbiol ; 22(8): 3561-3571, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32564477

RESUMO

Phylogenetic analysis of more than 4000 annotated bacterial acid phosphatases was carried out. Our analysis enabled us to sort these enzymes into the following three types: (1) class B acid phosphatases, which were distantly related to the other types, (2) class C acid phosphatases and (3) generic acid phosphatases (GAP). Although class B phosphatases are found in a limited number of bacterial families, which include known pathogens, class C acid phosphatases and GAP proteins are found in a variety of microbes that inhabit soil, fresh water and marine environments. As part of our analysis, we developed three profiles, named Pfr-B-Phos, Pfr-C-Phos and Pfr-GAP, to describe the three groups of acid phosphatases. These sequence-based profiles were then used to scan genomes and metagenomes to identify a large number of formerly unknown acid phosphatases. A number of proteins in databases annotated as hypothetical proteins were also identified by these profiles as putative acid phosphatases. To validate these in silico results, we cloned genes encoding candidate acid phosphatases from genomic DNA or recovered from metagenomic libraries or genes synthesized in vitro based on protein sequences recovered from metagenomic data. Expression of a number of these genes, followed by enzymatic analysis of the proteins, further confirmed that sequence similarity searches using our profiles could successfully identify previously unknown acid phosphatases.


Assuntos
Fosfatase Ácida/análise , Fosfatase Ácida/classificação , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano/genética , Fosfatase Ácida/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/genética , Metagenoma/genética , Metagenômica , Filogenia
4.
Environ Microbiol ; 22(1): 255-269, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657101

RESUMO

Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.


Assuntos
Redes e Vias Metabólicas/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Genoma Bacteriano , Modelos Biológicos , Nitrogênio/metabolismo , Pseudomonas putida/genética
5.
Adv Appl Microbiol ; 110: 149-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32386604

RESUMO

This article addresses the lifestyle of Pseudomonas and focuses on how Pseudomonas putida can be used as a model system for biotechnological processes in agriculture, and in the removal of pollutants from soils. In this chapter we aim to show how a deep analysis using genetic information and experimental tests has helped to reveal insights into the lifestyle of Pseudomonads. Pseudomonas putida is a Plant Growth Promoting Rhizobacteria (PGPR) that establishes commensal relationships with plants. The interaction involves a series of functions encoded by core genes which favor nutrient mobilization, prevention of pathogen development and efficient niche colonization. Certain Pseudomonas putida strains harbor accessory genes that confer specific biodegradative properties and because these microorganisms can thrive on the roots of plants they can be exploited to remove pollutants via rhizoremediation, making the consortium plant/Pseudomonas a useful tool to combat pollution.


Assuntos
Pseudomonas putida/fisiologia , Rizosfera , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Quimiotaxia , Desenvolvimento Vegetal , Plantas/microbiologia , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , Microbiologia do Solo , Simbiose
6.
Environ Microbiol ; 19(7): 2588-2603, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28321969

RESUMO

The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium.


Assuntos
Clostridium/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/classificação , Clostridium/metabolismo , Redes e Vias Metabólicas , Tipagem de Sequências Multilocus , Filogenia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , S-Adenosilmetionina/metabolismo
7.
Environ Microbiol ; 18(10): 3268-3283, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26261031

RESUMO

Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent.


Assuntos
Transporte Biológico/genética , Metabolismo Energético/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Pseudomonas putida/genética , Carbono/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fases de Leitura Aberta , Pseudomonas putida/metabolismo
8.
Environ Microbiol ; 18(12): 4653-4661, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27059806

RESUMO

In this study, a random mutant library of Herbaspirillum seropedicae SmR1 was constructed by Tn5 insertion and a mutant incapable of utilizing naringenin as a carbon source was isolated. The Tn5 transposon was found to be inserted in the fdeE gene (Hsero_1007), which encodes a monooxygenase. Two other mutant strains in fdeC (Hsero_1005) and fdeG (Hsero_1009) genes coding for a dioxygenase and a putative cyclase, respectively, were obtained by site-directed mutagenesis and then characterized. Liquid Chromatography coupled to mass spectrometry (LC-MS)/MS analyses of culture supernatant from the fdeE mutant strain revealed that naringenin remained unaltered, suggesting that the FdeE protein is involved in the initial step of naringenin degradation. LC-MS/MS analyses of culture supernatants from the wild-type (SmR1) and FdeC deficient mutant suggested that in H. seropedicae SmR1 naringenin is first mono-oxygenated by the FdeE protein, to produce 5,7,8-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, that is subsequently dioxygenated and cleaved at the A-ring by the FdeC dioxygenase, since the latter compound accumulated in the fdeC strain. After meta-cleavage of the A-ring, the subsequent metabolic steps generate oxaloacetic acid that is metabolized via the tricarboxylic acid cycle. This bacterium can also modify naringenin by attaching a glycosyl group to the B-ring or a methoxy group to the A-ring, leading to the generation of dead-end products.


Assuntos
Flavanonas/metabolismo , Herbaspirillum/metabolismo , Biodegradação Ambiental , Herbaspirillum/enzimologia , Herbaspirillum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espectrometria de Massas em Tandem
9.
Microbiology (Reading) ; 162(9): 1535-1543, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27417954

RESUMO

Aromatic compounds such as l-phenylalanine, 2-phenylethanol and trans-cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by 'green' alternatives produced in microbial cell factories. The solvent-tolerant Pseudomonas putida DOT-T1E strain was genetically modified to produce up to 1 g l-1 of l-phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the pheAfbr gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase (kdc) and an alcohol dehydrogenase (adh) enabled the strain to produce up to 180 mg l-1 2-phenylethanol. When phenylalanine ammonia lyase (pal) was introduced, the resulting strain produced up to 200 mg l-1 of trans-cinnamate. These results demonstrate that P. putida can serve as a promising microbial cell factory for the production of l-phenylalanine and related compounds.


Assuntos
Cinamatos/metabolismo , Aromatizantes/metabolismo , Fenilalanina/biossíntese , Álcool Feniletílico/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbiologia Industrial , Pseudomonas putida/genética
10.
J Bacteriol ; 196(3): 588-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24244009

RESUMO

TtgV is a member of the IclR family of transcriptional regulators. This regulator controls its own expression and that of the ttgGHI operon, which encodes an RND efflux pump. TtgV has two domains: a GAF-like domain harboring the effector-binding pocket and a helix-turn-helix (HTH) DNA-binding domain, which are linked by a long extended helix. When TtgV is bound to DNA, a kink at residue 86 in the extended helix gives rise to 2 helices. TtgV contacts DNA mainly through a canonical recognition helix, but its three-dimensional structure bound to DNA revealed that two residues, R19 and S35, outside the HTH motif, directly contact DNA. Effector binding to TtgV releases it from DNA; when this occurs, the kink at Q86 is lost and residues R19 and S35 are displaced due to the reorganization of the turn involving residues G44 and P46. Mutants of TtgV were generated at positions 19, 35, 44, 46, and 86 by site-directed mutagenesis to further analyze their role. Mutant proteins were purified to homogeneity, and differential scanning calorimetry (DSC) studies revealed that all mutants, except the Q86N mutant, unfold in a single event, suggesting conservation of the three-dimensional organization. All mutant variants bound effectors with an affinity similar to that of the parental protein. R19A, S35A, G44A, Q86N, and Q86E mutants did not bind DNA. The Q86A mutant was able to bind to DNA but was only partially released from its target operator in response to effectors. These results are discussed in the context of intramolecular signal transmission from the effector binding pocket to the DNA binding domain.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas putida/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Aminoácido N-Acetiltransferase , Proteínas de Bactérias/genética , DNA Bacteriano , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Pseudomonas putida/genética
11.
Environ Microbiol ; 16(5): 1267-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373097

RESUMO

In Gram-negative bacteria, multidrug efflux pumps are responsible for the extrusion of chemicals that are deleterious for growth. Some of these efflux pumps are induced by endogenously produced effectors, while abiotic or biotic signals induce the expression of other efflux pumps. In Pseudomonas putida, the TtgABC efflux pump is the main antibiotic extrusion system that respond to exogenous antibiotics through the modulation of the expression of this operon mediated by TtgR. The plasmid-encoded TtgGHI efflux pump in P. putida plays a minor role in antibiotic resistance in the parental strain; however, its role is critical in isogenic backgrounds deficient in TtgABC. Expression of ttgGHI is repressed by the TtgV regulator that recognizes indole as an effector, although P. putida does not produce indole itself. Because indole is not produced by Pseudomonas, the indole-dependent antibiotic resistance seems to be part of an antibiotic resistance programme at the community level. Pseudomonas putida recognizes indole added to the medium or produced by Escherichia coli in mixed microbial communities. Transcriptomic analyses revealed that the indole-specific response involves activation of 43 genes and repression of 23 genes. Indole enhances not only the expression of the TtgGHI pump but also a set of genes involved in iron homeostasis, as well as genes for amino acid catabolism. In a ttgABC-deficient P. putida, background ampicillin and other bactericidal compounds lead to cell death. Co-culture of E. coli and P. putida ΔttgABC allowed growth of the P. putida mutant in the presence of ampicillin because of induction of the indole-dependent efflux pump.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Indóis/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas putida/efeitos dos fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Indóis/metabolismo , Proteínas de Membrana Transportadoras/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
12.
Biotechnol Biofuels Bioprod ; 17(1): 51, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566218

RESUMO

BACKGROUND: Petrochemicals contribute to environmental issues, with concerns ranging from energy consumption and carbon emission to pollution. In contrast, microbial biorefineries offer eco-friendly alternatives. The solvent-tolerant Pseudomonas putida DOT-T1E serves as a suitable host for producing aromatic compounds, specifically L-phenylalanine and its derivative, 2-phenylethanol (2-PE), which find widespread applications in various industries. RESULTS: This study focuses on enhancing 2-PE production in two L-phenylalanine overproducing strains of DOT-T1E, namely CM12-5 and CM12-5Δgcd (xylABE), which grow with glucose and glucose-xylose, respectively. To synthesize 2-PE from L-phenylalanine, these strains were transformed with plasmid pPE-1, bearing the Ehrlich pathway genes, and it was found higher 2-PE production with glucose (about 50-60 ppm) than with xylose (< 3 ppm). To understand the limiting factors, we tested the addition of phenylalanine and intermediates from the Ehrlich and shikimate pathways. The results identified intracellular L-phenylalanine as a key limiting factor for 2-PE production. To overcame this limitation, a chorismate mutase/prephenate dehydratase variant-insentive to feedback inhibition by aromatic amino acids-was introduced in the producing strains. This led to increased L-phenylalanine production and subsequently produced more 2-PE (100 ppm). Random mutagenesis of the strains also produced strains with higher L-phenylalanine titers and increased 2-PE production (up to 120 ppm). The improvements resulted from preventing dead-end product accumulation from shikimate and limiting the catabolism of potential pathway intermediates in the Ehrlich pathway. The study explored agricultural waste substrates, such as corn stover, sugarcane straw and corn-syrup as potential C sources. The best results were obtained using 2G substrates at 3% (between 82 and 100 ppm 2-PE), with glucose being the preferred sugar for 2-PE production among the monomeric sugars in these substrates. CONCLUSIONS: The findings of this study offer strategies to enhance phenylalanine production, a key substrate for the synthesis of aromatic compounds. The ability of P. putida DOT-T1E to thrive with various C-sources and its tolerance to substrates, products, and potential toxicants in industrial wastes, are highlighted. The study identified and overcome possible bottlenecks for 2-PE production. Ultimately, the strains have potential to become efficient microbial platforms for synthesizing 2-PE from agro-industrial waste materials.

13.
Microb Biotechnol ; 17(4): e14404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588312

RESUMO

Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.


Assuntos
Fosfatase Ácida , Extremófilos , Fosfatase Ácida/metabolismo , Extremófilos/genética , Extremófilos/metabolismo , Hidrólise , Sequência de Aminoácidos , Especificidade por Substrato , Concentração de Íons de Hidrogênio
14.
Environ Microbiol ; 15(1): 36-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22458445

RESUMO

We used a combination of in silico and large-scale mutagenesis approaches to expand our current knowledge of the genetic determinants used by Pseudomonas putida KT2440 to attach to surfaces. We first identified in silico orthologues that have been annotated in Pseudomonas aeruginosa as potentially involved in attachment. In this search 67 paired-related genes of P. putida KT2440 and P. aeruginosa were identified as associated to adhesion. To test the potential role of the corresponding gene products in adhesion, 37 knockout mutants of KT2440, available in the Pseudomonas Reference Culture Collection, were analysed with regard to their ability to form biofilms in polystyrene microtitre plates; of these, six mutants were deficient in adhesion. Since mutants in all potential adhesion genes were not available, we generated a genome-wide collection of mutants made of 7684 independent mini-Tn5 insertions and tested them for the formation of biofilm on polystyrene microtitre plates. Eighteen clones that exhibited a reduction of at least twofold in biofilm biomass formation were considered candidate mutants in adhesion determinants. DNA sequencing of the insertion site identified five other new genes involved in adhesion. Phenotypic characterization of the mutants showed that 11 of the inactivated proteins were required for attachment to biotic surfaces too. This combined approach allowed us to identify new proteins with a role in P. putida adhesion, including the global regulator RpoN and GacS, PstS that corresponds to one of the paired-related genes for which a mutant was not available in the mutant collection, and a protein of unknown function (PP1633). The remaining mutants corresponded to functions known or predicted to participate in adhesion based on previous evidence, such as the large adhesion proteins LapA, LapF and flagellar proteins. In silico analysis showed this set of genes to be well conserved in all sequenced P. putida strains, and that at least eight reciprocal genes involved in attachment are shared by P. putida and P. aeruginosa.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Biofilmes , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas putida/genética , Virulência/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Glucose/metabolismo , Mutação , Pseudomonas aeruginosa/metabolismo , Pseudomonas putida/metabolismo , Rizosfera
15.
Environ Microbiol ; 15(3): 780-94, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23206161

RESUMO

Pseudomonas putida BIRD-1 is a plant growth-promoting rhizobacterium whose genome size is 5.7 Mbp. It adheres to plant roots and colonizes the rhizosphere to high cell densities even in soils with low moisture. This property is linked to its ability to synthesize trehalose, since a mutant deficient in the synthesis of trehalose exhibited less tolerance to desiccation than the parental strain. The genome of BIRD-1 encodes a wide range of proteins that help it to deal with reactive oxygen stress generated in the plant rhizosphere. BIRD-1 plant growth-promoting rhizobacteria properties derive from its ability to enhance phosphorous and iron solubilization and to produce phytohormones. BIRD-1 is capable of solubilizing insoluble inorganic phosphate forms through acid production. The genome of BIRD-1 encodes at least five phosphatases related to phosphorous solubilization, one of them being a phytase that facilitates the utilization of phytic acid, the main storage form of phosphorous in plants. Pyoverdine is the siderophore produced by this strain, a mutant that in the FvpD siderophore synthase failed to grow on medium without supplementary iron, but the mutant was as competitive as the parental strain in soils because it captures the siderophores produced by other microbes. BIRD-1 overproduces indole-3-acetic acid through convergent pathways.


Assuntos
Genoma , Pseudomonas putida/genética , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas putida/enzimologia , Pseudomonas putida/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sideróforos/metabolismo
16.
Microb Biotechnol ; 16(5): 1069-1086, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36748404

RESUMO

Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rio Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5-5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.


Assuntos
Celulases , Ecossistema , Proteômica , Celulose/metabolismo , Celulases/metabolismo , Monossacarídeos
17.
Antimicrob Agents Chemother ; 56(2): 1001-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143519

RESUMO

Pseudomonas putida KT2440 is a chloramphenicol-resistant bacterium that is able to grow in the presence of this antibiotic at a concentration of up to 25 µg/ml. Transcriptomic analyses revealed that the expression profile of 102 genes changed in response to this concentration of chloramphenicol in the culture medium. The genes that showed altered expression include those involved in general metabolism, cellular stress response, gene regulation, efflux pump transporters, and protein biosynthesis. Analysis of a genome-wide collection of mutants showed that survival of a knockout mutant in the TtgABC resistance-nodulation-division (RND) efflux pump and mutants in the biosynthesis of pyrroloquinoline (PQQ) were compromised in the presence of chloramphenicol. The analysis also revealed that an ABC extrusion system (PP2669/PP2668/PP2667) and the AgmR regulator (PP2665) were needed for full resistance toward chloramphenicol. Transcriptional arrays revealed that AgmR controls the expression of the pqq genes and the operon encoding the ABC extrusion pump from the promoter upstream of open reading frame (ORF) PP2669.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cloranfenicol/farmacologia , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/efeitos dos fármacos , Proteínas de Bactérias/genética , Meios de Cultura , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/metabolismo , Transcriptoma
18.
Appl Environ Microbiol ; 78(15): 5104-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22582075

RESUMO

In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer of the NAH7 plasmid enables naphthalene degradation by P. putida KT2440 while alleviating the cellular stress brought about by this toxic compound, without affecting key functions necessary for survival and colonization of the rhizosphere. Pseudomonas putida KT2440(NAH7) efficiently expresses the Nah catabolic pathway in vitro and in situ, leading to the complete mineralization of [(14)C]naphthalene, measured as the evolution of (14)CO(2), while the rate of mineralization was at least 2-fold higher in the rhizosphere than in bulk soil.


Assuntos
Tolerância a Medicamentos/fisiologia , Naftalenos/toxicidade , Raízes de Plantas/metabolismo , Pseudomonas putida/fisiologia , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Dióxido de Carbono/análise , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/metabolismo , Conjugação Genética/genética , Tolerância a Medicamentos/genética , Análise em Microsséries , Naftalenos/metabolismo , Estresse Oxidativo/genética , Raízes de Plantas/microbiologia , Plasmídeos/genética , Pseudomonas putida/genética
19.
Environ Microbiol Rep ; 14(6): 934-946, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35651318

RESUMO

The extensive use of petrochemicals has produced serious environmental pollution problems; fortunately, bioremediation is considered an efficient way to fight against pollution. In line with Synthetic Biology is that robust microbial chassis with an expanded ability to remove environmental pollutants are desirable. Pseudomonas putida KT2440 is a robust lab microbe that has preserved the ability to survive in the environment and is the natural host for the self-transmissible TOL plasmid, which allows metabolism of toluene and xylenes to central metabolism. We show that the P. putida KT2440 (pWW0) acquired the ability to use octane as the sole C-source after acquisition of an almost 62-kb ICE from a microbial community that harbours an incomplete set of octane metabolism genes. The ICE bears genes for an alkane monooxygenase, a PQQ-dependent alcohol dehydrogenase and aldehyde dehydrogenase but lacks the electron donor enzymes required for the monooxygenase to operate. Host rubredoxin and rubredoxin reductase allow metabolism of octane to octanol. Proteomic assays and mutants unable to grow on octane or octanoic acid revealed that metabolism of octane is mediated by redundant host and ICE enzymes. Octane is oxidized to octanol, octanal and octanoic acid, the latter is subsequently acylated and oxidized to yield acetyl-CoA that is assimilated via the glyoxylate shunt; in fact, a knockout mutant in the aceA gene, encoding isocitrate lyase was unable to grow on octane or octanoic acid.


Assuntos
Pseudomonas putida , Pseudomonas putida/metabolismo , Proteômica , Octanos/metabolismo , Oxigenases de Função Mista/metabolismo , Octanóis/metabolismo
20.
Microb Biotechnol ; 15(4): 1026-1030, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298878

RESUMO

Much of the energy being used to power our lives comes from fossil fuels such as coal, natural gas and petroleum. These energy sources are non-renewable, are being exhausted and also pollute the air, water and soil with toxic chemicals. Their mining, transportation, refining and use are associated with a large carbon footprint that contributes significantly to global warming. In addition, the geopolitical complexities surrounding the main fossil fuel producers create risks and uncertainties around the world. Replacing fossil fuels with clean, renewable forms of energy is paramount to creating a sustainable and healthy future, and for laying the foundations for global political stability and prosperity. Using biomass from plants, microbes can produce biofuels that are identical to or perform as well as fossil fuels. In addition of creating sustainable energy, advancing the biofuel industry will create new, high-quality rural jobs whilst improving energy security.


Assuntos
Biocombustíveis , Combustíveis Fósseis , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA