Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35666817

RESUMO

Hybridization between lineages that have not reached complete reproductive isolation appears more and more like a common phenomenon. Indeed, speciation genomic studies have now extensively shown that many species' genomes have hybrid ancestry. However, genomic patterns of introgression are often heterogeneous across the genome. In many organisms, a positive correlation between introgression levels and recombination rate has been observed. It is usually explained by the purging of deleterious introgressed material due to incompatibilities. However, the opposite relationship was observed in a North American population of Drosophila melanogaster with admixed European and African ancestry. In order to explore how directional and epistatic selection can impact the relationship between introgression and recombination, we performed forward simulations of whole D. melanogaster genomes reflecting the North American population's history. Our results revealed that the simplest models of positive selection often yield negative correlations between introgression and recombination such as the one observed in D. melanogaster. We also confirmed that incompatibilities tend to produce positive introgression-recombination correlations. And yet, we identify parameter space under each model where the predicted correlation is reversed. These findings deepen our understanding of the evolutionary forces that may shape patterns of ancestry across genomes, and they strengthen the foundation for future studies aimed at estimating genome-wide parameters of selection in admixed populations.


Assuntos
Drosophila melanogaster , Genética Populacional , Animais , Drosophila melanogaster/genética , Especiação Genética , Genômica , Hibridização Genética , Recombinação Genética , Seleção Genética
2.
Evol Lett ; 4(3): 226-242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32547783

RESUMO

Understanding how new species arise through the progressive establishment of reproductive isolation (RI) barriers between diverging populations is a major goal in Evolutionary Biology. An important result of speciation genomics studies is that genomic regions involved in RI frequently harbor anciently diverged haplotypes that predate the reconstructed history of species divergence. The possible origins of these old alleles remain much debated, as they relate to contrasting mechanisms of speciation that are not yet fully understood. In the European sea bass (Dicentrarchus labrax), the genomic regions involved in RI between Atlantic and Mediterranean lineages are enriched for anciently diverged alleles of unknown origin. Here, we used haplotype-resolved whole-genome sequences to test whether divergent haplotypes could have originated from a closely related species, the spotted sea bass (Dicentrarchus punctatus). We found that an ancient admixture event between D. labrax and D. punctatus is responsible for the presence of shared derived alleles that segregate at low frequencies in both lineages of D. labrax. An exception to this was found within regions involved in RI between the two D. labrax lineages. In those regions, archaic tracts originating from D. punctatus locally reached high frequencies or even fixation in Atlantic genomes but were almost absent in the Mediterranean. We showed that the ancient admixture event most likely occurred between D. punctatus and the D. labrax Atlantic lineage, while Atlantic and Mediterranean D. labrax lineages were experiencing allopatric isolation. Our results suggest that local adaptive introgression and/or the resolution of genomic conflicts provoked by ancient admixture have probably contributed to the establishment of RI between the two D. labrax lineages.

3.
Trends Ecol Evol ; 35(3): 245-258, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810774

RESUMO

The particular combinations of alleles that define haplotypes along individual chromosomes can be determined with increasing ease and accuracy by using current sequencing technologies. Beyond allele frequencies, haplotype data collected in population samples contain information about the history of allelic associations in gene genealogies, and this is of tremendous potential for conservation genomics. We provide an overview of how haplotype information can be used to assess historical demography, gene flow, selection, and the evolutionary outcomes of hybridization across different timescales relevant to conservation issues. We address technical aspects of applying such approaches to nonmodel species. We conclude that there is much to be gained by integrating haplotype-based analyses in future conservation genomics studies.


Assuntos
Fluxo Gênico , Genômica , Alelos , Frequência do Gene , Haplótipos
4.
Evol Appl ; 12(9): 1743-1756, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31548854

RESUMO

Evaluating species dispersal across the landscape is essential to design appropriate management and conservation actions. However, technical difficulties often preclude direct measures of individual movement, while indirect genetic approaches rely on assumptions that sometimes limit their application. Here, we show that the temporal decay of admixture tracts lengths can be used to assess genetic connectivity within a population introgressed by foreign haplotypes. We present a proof-of-concept approach based on local ancestry inference in a high gene flow marine fish species, the European sea bass (Dicentrarchus labrax). Genetic admixture in the contact zone between Atlantic and Mediterranean sea bass lineages allows the introgression of Atlantic haplotype tracts within the Mediterranean Sea. Once introgressed, blocks of foreign ancestry are progressively eroded by recombination as they diffuse from the western to the eastern Mediterranean basin, providing a means to estimate dispersal. By comparing the length distributions of Atlantic tracts between two Mediterranean populations located at different distances from the contact zone, we estimated the average per-generation dispersal distance within the Mediterranean lineage to less than 50 km. Using simulations, we showed that this approach is robust to a range of demographic histories and sample sizes. Our results thus support that the length of admixture tracts can be used together with a recombination clock to estimate genetic connectivity in species for which the neutral migration-drift balance is not informative or simply does not exist.

5.
Evolution ; 72(6): 1330-1332, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29766494

RESUMO

Complex demography and selection at linked sites can generate spurious signatures of divergent selection. Unfortunately, many attempts at demographic inference consider overly simple models and neglect the effect of selection at linked sites. In this issue, Rougemont and Bernatchez (2018) applied an approximate Bayesian computation (ABC) framework that accounts for indirect selection to reveal a complex history of secondary contacts in Atlantic salmon (Salmo salar) that might explain a high rate of latitudinal clines in this species.


Assuntos
Distribuição Animal , Variação Genética , Salmo salar/genética , Salmo salar/fisiologia , Seleção Genética , Animais , Bloqueio Interatrial
6.
Nat Commun ; 9(1): 3022, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054471

RESUMO

The originally published version of this Article contained errors in Figure 5, whereby the sign for Spearman's rho was incorrect in panels b and c. These errors have now been corrected in both the PDF and HTML versions of the Article.

7.
Nat Commun ; 9(1): 2518, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955054

RESUMO

Speciation is a complex process that leads to the progressive establishment of reproductive isolation barriers between diverging populations. Genome-wide comparisons between closely related species have revealed the existence of heterogeneous divergence patterns, dominated by genomic islands of increased divergence supposed to contain reproductive isolation loci. However, this divergence landscape only provides a static picture of the dynamic process of speciation, during which confounding mechanisms unrelated to speciation can interfere. Here we use haplotype-resolved whole-genome sequences to identify the mechanisms responsible for the formation of genomic islands between Atlantic and Mediterranean sea bass lineages. Local ancestry patterns show that genomic islands first emerged in allopatry through linked selection acting on a heterogeneous recombination landscape. Then, upon secondary contact, preexisting islands were strongly remolded by differential introgression, revealing variable fitness effects among regions involved in reproductive isolation. Interestingly, we find that divergent regions containing ancient polymorphisms conferred the strongest resistance to introgression.


Assuntos
Bass/genética , Especiação Genética , Genoma , Ilhas Genômicas , Polimorfismo Genético , Animais , Oceano Atlântico , Bass/classificação , Mapeamento Cromossômico , Feminino , Fluxo Gênico , Genética Populacional , Haplótipos , Masculino , Mar Mediterrâneo , Filogenia , Isolamento Reprodutivo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA