Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054778

RESUMO

Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.


Assuntos
Hipocampo/metabolismo , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase/fisiologia , Plasticidade Neuronal , Neurotransmissores/metabolismo , Splicing de RNA , Animais , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório , Hipocampo/fisiologia , Homeostase , Camundongos , Camundongos Transgênicos , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Células Piramidais/metabolismo , Células Piramidais/fisiologia , RNA/metabolismo , Transmissão Sináptica
2.
Neurochem Res ; 44(3): 692-702, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30426348

RESUMO

Aging, as the major risk factor of Alzheimer's disease (AD), may increase susceptibility to neurodegenerative diseases through many gradual molecular and biochemical changes. Extracellular glutamate homeostasis and extrasynaptic glutamate N-methyl-D-aspartate receptors (NMDAR) are among early synaptic targets of oligomeric amyloid ß (Aßo), one of the AD related synaptotoxic protein species. In this study, we asked for the effects of Aßo on long-term depression (LTD), a form of synaptic plasticity dependent on extrasynaptic NMDAR activation, and on a tonic current (TC) resulting from the activation of extrasynaptic NMDAR by ambient glutamate in hippocampal slices from young (3-6-month-old) and aged (24-28-month-old) Sprague-Dawley rats. Aßo significantly enhanced the magnitude of LTD and the amplitude of TC in aged slices compared to young ones. TBOA, a glutamate transporter inhibitor, also significantly increased LTD magnitude and TC amplitude in slices from aged rats, suggesting either an age-related weakness of the glutamate clearance system and/or a facilitated extrasynaptic NMDAR activation. From our present data, we hypothesize that senescence-related impairment of the extrasynaptic environment may be a vector of vulnerability of the aged hippocampus to neurodegenerative promotors such as Aßo.


Assuntos
Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo
3.
Cereb Cortex ; 28(11): 3976-3993, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048465

RESUMO

The treatment of Alzheimer's disease (AD) remains challenging and requires a better in depth understanding of AD progression. Particularly, the link between amyloid protein precursor (APP) processing and Tau pathology development remains poorly understood. Growing evidences suggest that APP processing and amyloid-ß (Aß) release are upstream of Tau pathology but the lack of animal models mimicking the slow progression of human AD raised questions around this mechanism. Here, we described that an AD-like ßAPP processing in adults wild-type rats, yielding to human APP, ßCTF and Aß levels similar to those observed in AD patients, is sufficient to trigger gradual Tauopathy. The Tau hyperphosphorylation begins several months before the formation of both amyloid plaques and tangle-like aggregates in aged rats and without associated inflammation. Based on a longitudinal characterization over 30 months, we showed that extrasynaptic and emotional impairments appear before long-term potentiation deficits and memory decline and so before Aß and Tau aggregations. These compelling data allowed us to (1) experimentally confirm the causal relationship between ßAPP processing and Tau pathology in vivo and without Tau transgene overexpression, (2) support the amyloidogenic cascade and (3) propose a 4-step hypothesis of prodromal AD progression.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Animais , Progressão da Doença , Feminino , Vetores Genéticos , Humanos , Potenciação de Longa Duração , Masculino , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/genética , Agregação Patológica de Proteínas/metabolismo , Ratos Wistar
4.
Acta Neuropathol ; 135(6): 839-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696365

RESUMO

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known. We analyzed biopsies from AD patients and APP x presenilin 1 knock-in mice that were previously shown to present a loss of pyramidal neurons in the CA1 area of the hippocampus. We observed that the proportion of stubby spines and the width of spine necks are inversely correlated with synapse density in frontal cortical biopsies from non-AD and AD patients. In mice, the reduction in the density of synapses in the stratum radiatum was preceded by an alteration of spine morphology, with a reduction of their length and an enlargement of their neck. Serial sectioning examined with electron microscopy allowed us to precisely measure spine parameters. Mathematical modeling indicated that the shortening and widening of the necks should alter the electrical compartmentalization of the spines, leading to reduced postsynaptic potentials in spine heads, but not in soma. Accordingly, there was no alteration in basal synaptic transmission, but long-term potentiation and spatial memory were impaired. These results indicate that an alteration of spine morphology could be involved in the early cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Espinhas Dendríticas/patologia , Espinhas Dendríticas/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Simulação por Computador , Modelos Animais de Doenças , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Microscopia Eletrônica , Pessoa de Meia-Idade , Modelos Neurológicos , Presenilina-1/genética , Presenilina-1/metabolismo , Sinapses/patologia , Técnicas de Cultura de Tecidos
5.
Hum Mol Genet ; 24(21): 5965-76, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26358780

RESUMO

Alzheimer's disease (AD) is characterized by both amyloid and Tau pathologies. The amyloid component and altered cholesterol metabolism are closely linked, but the relationship between Tau pathology and cholesterol is currently unclear. Brain cholesterol is synthesized in situ and cannot cross the blood-brain barrier: to be exported from the central nervous system into the blood circuit, excess cholesterol must be converted to 24S-hydroxycholesterol by the cholesterol 24-hydroxylase encoded by the CYP46A1 gene. In AD patients, the concentration of 24S-hydroxycholesterol in the plasma and the cerebrospinal fluid are lower than in healthy controls. The THY-Tau22 mouse is a model of AD-like Tau pathology without amyloid pathology. We used this model to investigate the potential association between Tau pathology and CYP46A1 modulation. The amounts of CYP46A1 and 24S-hydroxycholesterol in the hippocampus were lower in THY-Tau22 than control mice. We used an adeno-associated virus (AAV) gene transfer strategy to increase CYP46A1 expression in order to investigate the consequences on THY-Tau22 mouse phenotype. Injection of the AAV-CYP46A1 vector into the hippocampus of THY-Tau22 mice led to CYP46A1 and 24S-hydroxycholesterol content normalization. The cognitive deficits, impaired long-term depression and spine defects that characterize the THY-Tau22 model were completely rescued, whereas Tau hyperphosphorylation and associated gliosis were unaffected. These results argue for a causal link between CYP46A1 protein content and memory impairments that result from Tau pathology. Therefore, CYP46A1 may be a relevant therapeutic target for Tauopathies and especially for AD.


Assuntos
Transtornos da Memória/enzimologia , Esteroide Hidroxilases/metabolismo , Tauopatias/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Colesterol 24-Hidroxilase , Modelos Animais de Doenças , Gliose/metabolismo , Hipocampo/enzimologia , Humanos , Hidroxicolesteróis/metabolismo , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Esteroide Hidroxilases/genética , Tauopatias/genética , Proteínas tau
6.
J Neurosci ; 30(33): 10991-1003, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20720106

RESUMO

The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.


Assuntos
Angiopatia Amiloide Cerebral/fisiopatologia , Hipocampo/fisiopatologia , Memória/fisiologia , Septo do Cérebro/fisiopatologia , Ritmo Teta , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação , Peptídeos beta-Amiloides/metabolismo , Animais , Angiopatia Amiloide Cerebral/patologia , Hipocampo/patologia , Masculino , Neurônios/patologia , Neurônios/fisiologia , Periodicidade , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia
7.
Learn Mem ; 17(7): 355-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20592054

RESUMO

Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and phosphatases (PPs) are important players in these mechanisms. Protein serine/threonine phosphatase 1 (PP1), in particular, was recently shown to be important for transcription-dependent memory by regulating chromatin remodeling. However, the impact of PP1 on gene transcription in adult neurons remains not fully delineated. Here, we demonstrate that the nuclear pool of PP1 is associated with transcriptional events involving molecular components of signaling cascades acting as positive and negative regulators of memory and brain plasticity. The data show that inhibiting this pool selectively in forebrain neurons improves memory performance, enhances long-term potentiation (LTP), and modulates gene transcription. These findings highlight an important role for PP1 in the regulation of gene transcription in LTM and synaptic plasticity in the adult brain.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Proteína Fosfatase 1/metabolismo , Animais , Núcleo Celular/metabolismo , Expressão Gênica , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Transcrição Gênica
8.
Prog Neurobiol ; 206: 102139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391810

RESUMO

Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid ß (Aß) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aß-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aß and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.


Assuntos
Doença de Alzheimer , Receptores Purinérgicos P2X7/deficiência , Tauopatias , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Animais , Cognição , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
9.
Neuropharmacology ; 164: 107902, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811873

RESUMO

Vesicular glutamate transporters (VGLUT1-3) mediate the uptake of glutamate into synaptic vesicles. VGLUTs are pivotal actors of excitatory transmission and of almost all brain functions. Their implication in various pathologies has been clearly documented. Despite their functional importance, the pharmacology of VGLUTs is limited to a few dyes such as Trypan Blue, Rose Bengal or Brilliant Yellow type. Here, we report the design and evaluation of new potent analogs based on Trypan Blue scaffold. Our best compound, named LSP5-2157, has an EC50 of 50 nM on glutamate vesicular uptake. Using a 3D homology model of VGLUT1 and docking experiments, we determined its putative binding subdomains within vesicular glutamate transporters and validated the structural requirement for VGLUT inhibition. To better estimate the specificity and potency of LSP5-2157, we also investigated its ability to block glutamatergic transmission in autaptic hippocampal cells. Neither glutamate receptors nor GABAergic transmission or transmission machinery were affected by LSP5-2157. Low doses of compound reversibly reduce glutamatergic neurotransmission in hippocampal autpases. LSP5-2157 had a low and depressing effect on synaptic efficacy in hippocampal slice. Furthermore, LSP5-2157 had no effect on NMDA-R- mediated fEPSP but reduce synaptic plasticity induced by 3 trains of 100 Hz. Finally, LSP5-2157 had the capacity to inhibit VGLUT3-dependent auditory synaptic transmission in the guinea pig cochlea. In this model, it abolished the compound action potential of auditory nerve at high concentration showing the limited permeation of LSP5-2157 in an in-vivo model. In summary, the new ligand LSP5-2157, has a high affinity and specificity for VGLUTs and shows some permeability in isolated neuron, tissue preparations or in vivo in the auditory system. These findings broaden the field of VGLUTs inhibitors and open the way to their use to assess glutamatergic functions in vitro and in vivo.


Assuntos
Proteínas Vesiculares de Transporte de Glutamato/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Nervo Coclear/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Cobaias , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
10.
Neuroscience ; 396: 175-186, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472430

RESUMO

Significant alterations in glutamatergic neurotransmission have been reported in major depressive disorder (MDD) that could underlie psychiatric traits. Studies were mainly interested in synaptic dysfunction in the prefrontal cortex, a key structure involved in depressive-like behavior, however hippocampus has been shown to be important in MDD. As cognitive deficits such as hippocampus-memory process were observed in MDD, we investigated in a mild hypoglutamatergic model behaviors related to depression and memory, synaptic transmission parameters and glutamatergic state specifically in the hippocampus. We thus characterized these phenotypes in adult male mice partially depleted in glutaminase type 1 or GLS1 (GLS1 HET), the enzyme responsible for glutamate synthesis in neurons, that we previously characterized as displaying moderate lower levels of glutamate in brain. We showed that GLS1 mutant mice display AMPA-R-mediated response deficits after prolonged repetitive stimulation with electrophysiological recording and inability to sustain glutamate release by microdialysis experiments with no consequences on behavioral spatial learning performances. However, their ability to escape from unpleasant but repeated escapable condition was attenuated whereas they were more immobile in the unescapable situation in the FST during re-test. These results show that GLS1 mutant mice display moderate impairments of hippocampal glutamatergic neurotransmission and moderate changes in adaptive behaviors that have been shown to participate to the development of depressive-like state.


Assuntos
Aprendizagem da Esquiva/fisiologia , Ácido Glutâmico/fisiologia , Glutaminase/fisiologia , Hipocampo/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Aprendizagem Espacial/fisiologia , Transmissão Sináptica/fisiologia , Animais , Corticosterona/sangue , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Glutaminase/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Microdiálise , Mutação , Restrição Física/fisiologia
11.
Sci Rep ; 9(1): 20138, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882891

RESUMO

The prevalence of cognitive decline is increasing as the ageing population is considerably growing. Restricting this age-associated process has become a challenging public health issue. The age-related increase in oxidative stress plays a major role in cognitive decline, because of its harmful effect on functional plasticity of the brain, such as long-term potentiation (LTP). Here, we show that citrulline (Cit) has powerful antioxidant properties that can limit ex vivo oxidative stress-induced LTP impairment in the hippocampus. We also illustrate that a three-month Cit supplementation has a protective effect on LTP in aged rats in vivo. The identification of a Cit oxidation byproduct in vitro suggests that the antioxidant properties of Cit could result from its own oxidation. Cit supplementation may be a promising preventive nutritional approach to limit age-related cognitive decline.


Assuntos
Envelhecimento , Citrulina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
12.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275019

RESUMO

Chromatin acetylation, a critical regulator of synaptic plasticity and memory processes, is thought to be altered in neurodegenerative diseases. Here, we demonstrate that spatial memory and plasticity (LTD, dendritic spine formation) deficits can be restored in a mouse model of tauopathy following treatment with CSP-TTK21, a small-molecule activator of CBP/p300 histone acetyltransferases (HAT). At the transcriptional level, CSP-TTK21 re-established half of the hippocampal transcriptome in learning mice, likely through increased expression of neuronal activity genes and memory enhancers. At the epigenomic level, the hippocampus of tauopathic mice showed a significant decrease in H2B but not H3K27 acetylation levels, both marks co-localizing at TSS and CBP enhancers. Importantly, CSP-TTK21 treatment increased H2B acetylation levels at decreased peaks, CBP enhancers, and TSS, including genes associated with plasticity and neuronal functions, overall providing a 95% rescue of the H2B acetylome in tauopathic mice. This study is the first to provide in vivo proof-of-concept evidence that CBP/p300 HAT activation efficiently reverses epigenetic, transcriptional, synaptic plasticity, and behavioral deficits associated with Alzheimer's disease lesions in mice.


Assuntos
Ativadores de Enzimas/farmacologia , Memória , Plasticidade Neuronal/efeitos dos fármacos , Tauopatias/fisiopatologia , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/metabolismo , Inflamação/patologia , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tauopatias/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transgenes
13.
J Neurosci ; 26(35): 9038-46, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16943562

RESUMO

Cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca (MS-DB) project to the hippocampus where they are involved in generating theta rhythmicity. So far, the functional properties of neurochemically identified MS-DB neurons are not fully characterized. In this study, MS-DB neurons recorded in urethane anesthetized rats and in unanesthetized restrained rats were labeled with neurobiotin and processed for immunohistochemistry against glutamic acid decarboxylase (GAD), parvalbumin (PV), and choline acetyltransferase (ChAT). The majority of the 90 labeled neurons (75.5%) were GAD+. Among them, 34.0% were also PV+, but none were ChAT+. Only 8.8% of the labeled neurons were found ChAT+. Remaining neurons (15.5%) were not identified. In anesthetized rats, all of the PV/GAD+ and 65% of GAD+ neurons exhibited burst-firing activity at the theta frequency. PV/GAD+ neurons displayed higher discharge rate and longer burst duration compared with GAD+ neurons. At variance, all of the ChAT+ neurons were slow-firing. Cluster-firing and tonic-firing were observed in GAD+ and unidentified neurons. In unanesthetized rats, during wakefulness or rapid eye movement sleep with hippocampal theta, the bursting neurons were PV/GAD+ or GAD+, whereas all of the ChAT+ neurons were slow-firing. Across the sleep-wake cycle, the GABAergic component of the septohippocampal pathway was always more active than the cholinergic one. The fact that cholinergic MS-DB neurons do not display theta-related bursting or tonic activity but have a very low firing rate questions how acetylcholine exerts its activating role in the septohippocampal system.


Assuntos
Anestesia , Neurônios/fisiologia , Septo do Cérebro/fisiologia , Animais , Colina O-Acetiltransferase/metabolismo , Eletrofisiologia , Glutamato Descarboxilase/metabolismo , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Parvalbuminas/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física , Septo do Cérebro/citologia , Septo do Cérebro/metabolismo , Ritmo Teta
14.
Curr Alzheimer Res ; 14(1): 30-39, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27539596

RESUMO

BACKGROUND: The early phase of Alzheimer`s disease (AD) involves the disruption of finely tuned neuronal circuitry in brain regions associated with learning and memory. This tuning is obtained from the delicate balance of excitatory and inhibitory inputs which regulate cortical network function. This homeostatic plasticity provides a dynamic basis for appropriate information transfer in the brain. Excitatory synaptic transmission is driven mainly by glutamatergic synapses whereas inhibitory synaptic transmission involves GABAergic and glycinergic signaling. GABAergic cells, responsible for inhibitory transmission in adult brain, have recently become the subject of study in AD research. The discovery that GABAergic interneurons are targets of the amyloid-beta (Aß) peptide suggest that deregulation of the excitatory/inhibitory balance contributes to changes in cortical regulation, possibly with consequences for the development of the pathology. Thus, understanding the molecular details involved in GABAergic alterations may provide insight into the pathogenesis of AD. OBJECTIVE: Here, we review recent discoveries illustrating the concept of early alterations to the inhibitory circuits in AD and consider their functional implications for GABAergic components at membrane, cellular and microcircuit levels. CONCLUSION: We look at approaches that may lead to new hypotheses, animal models and therapeutic strategies based on GABAergic cells in AD with particular interest in microcircuits.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Neurônios/efeitos dos fármacos , Neurônios/patologia
15.
J Physiol Paris ; 99(2-3): 154-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16442785

RESUMO

Synaptic plasticity following NMDA application on hippocampal slices from young (3-5 months) and aged (24-27 months) rats was compared. In young rats, NMDA (20 microM) induced opposite effects depending on the duration of the application. A short (1 min) or long (5 min) application induced a long-term depression of synaptic activity while a 3 min application induced a potentiation. In aged rats, however, NMDA application always induced depression, regardless of the duration. To identify mechanisms which could explain the difference observed between young and aged rats, we explored changes in NMDA receptor activation and changes in kinase/phosphatase balance. We first demonstrate that the potentiation present in slices from young rats was not restored in aged rats by exogenous application of the co-agonist of NMDA receptor d-serine (which compensates for the changes in NMDAR activation seen in aged rats). This suggested that alterations in synaptic plasticity activation mainly involve intracellular mechanisms. We next showed that the participation of the kinases PKA and CaMKII in the NMDA-induced potentiation in young rats is negligible. Finally, we determined the consequences of phosphatase inhibition in aged rats. Incubation of slices in okadaic acid (a PP1/PP2B antagonist) did not affect the depression induced by a 3min NMDA application in aged rats. The PP2B antagonist FK506 restored potentiation in aged rats (3 min NMDA application). In hippocampal neurons from aged rats, a depression is always observed, suggesting a preferential activation of PP2B by NMDA in these neurons.


Assuntos
Envelhecimento/fisiologia , Calcineurina/fisiologia , Hipocampo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Sinapses/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Potenciais Evocados/efeitos da radiação , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , N-Metilaspartato/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Serina/farmacologia , Sinapses/efeitos dos fármacos
16.
Mol Neurodegener ; 11: 5, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26759118

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most frequent form of dementia in the elderly and no effective treatment is currently available. The mechanisms triggering AD onset and progression are still imperfectly dissected. We aimed at deciphering the modifications occurring in vivo during the very early stages of AD, before the development of amyloid deposits, neurofibrillary tangles, neuronal death and inflammation. Most current AD models based on Amyloid Precursor Protein (APP) overproduction beginning from in utero, to rapidly reproduce the histological and behavioral features of the disease within a few months, are not appropriate to study the early steps of AD development. As a means to mimic in vivo amyloid APP processing closer to the human situation in AD, we used an adeno-associated virus (AAV)-based transfer of human mutant APP and Presenilin 1 (PS1) genes to the hippocampi of two-month-old C57Bl/6 J mice to express human APP, without significant overexpression and to specifically induce its amyloid processing. RESULTS: The human APP, ßCTF and Aß42/40 ratio were similar to those in hippocampal tissues from AD patients. Three months after injection the murine Tau protein was hyperphosphorylated and rapid synaptic failure occurred characterized by decreased levels of both PSD-95 and metabolites related to neuromodulation, on proton magnetic resonance spectroscopy ((1)H-MRS). Astrocytic GLT-1 transporter levels were lower and the tonic glutamatergic current was stronger on electrophysiological recordings of CA1 hippocampal region, revealing the overstimulation of extrasynaptic N-methyl D-aspartate receptor (NMDAR) which precedes the loss of long-term potentiation (LTP). These modifications were associated with early behavioral impairments in the Open-field, Y-maze and Morris Mater Maze tasks. CONCLUSIONS: Altogether, this demonstrates that an AD-like APP processing, yielding to levels of APP, ßCTF and Aß42/Aß40 ratio similar to those observed in AD patients, are sufficient to rapidly trigger early steps of the amyloidogenic and Tau pathways in vivo. With this strategy, we identified a sequence of early events likely to account for disease onset and described a model that may facilitate efforts to decipher the factors triggering AD and to evaluate early neuroprotective strategies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
17.
J Alzheimers Dis ; 48(4): 927-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402095

RESUMO

This study shows a decrease in soluble amyloid-ß protein precursor-α (sAßPPα) levels, but no change in sAßPPß, in the rat hippocampus during healthy aging, associated with the weaker expression of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) in the CA1 area of hippocampal slices. Exogenous application of recombinant sAßPPα increases NMDAR activation in aged animals and could rescue the age-related LTP deficits described. In contrast, it does not affect basal synaptic transmission or glutamate release. These results indicate that improving synaptic sAßPPα availability at synapses helps in reducing the functional NMDAR-related deregulation of hippocampal networks linked to aging.


Assuntos
Envelhecimento/fisiologia , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/administração & dosagem , Animais , Western Blotting , Estimulação Elétrica , Eletroforese em Gel de Poliacrilamida , Potenciais Pós-Sinápticos Excitadores/fisiologia , Microeletrodos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos
18.
Sci Rep ; 5: 15862, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511387

RESUMO

Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.


Assuntos
Quimiocina CCL3/farmacologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Quimiocina CCL3/metabolismo , Masculino , Camundongos , Neurotransmissores/metabolismo
19.
Aging Cell ; 12(1): 76-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23113887

RESUMO

Epidemiological data suggest that a poor ω3 status favoured by the low ω3/ω6 polyunsaturated fatty acids ratio in western diets contributes to cognitive decline in the elderly, but mechanistic evidence is lacking. We therefore explored the impact of ω3 deficiency on the evolution of glutamatergic transmission in the CA1 of the hippocampus during aging by comparing 4 groups of rats aged 6-22 months fed ω3-deficient or ω3/ω6-balanced diets from conception to sacrifice: Young ω3 Balanced (YB) or Deficient (YD), Old ω3 Balanced (OB) or Deficient (OD) rats. ω3 Deficiency induced a 65% decrease in the amount of docosahexaenoic acid (DHA, the main ω3 in cell membranes) in brain phospholipids, but had no impact on glutamatergic transmission and astroglial function in young rats. Aging induced a 10% decrease in brain DHA, a 35% reduction of synaptic efficacy (fEPSP/PFV) due to decreased presynaptic glutamate release and a 30% decrease in the astroglial glutamate uptake associated with a marked astrogliosis (+100% GFAP). The ω3 deficiency further decreased these hallmarks of aging (OD vs. OB rats: -35% fEPSP/PFV P < 0.05, -15% astroglial glutamate uptake P < 0.001, +30% GFAP P < 0.01). This cannot be attributed to aggravation of the brain DHA deficit because the brains of OD rats had more DHA than those of YD rats. Thus, ω3 deficiency worsens the age-induced degradation of glutamatergic transmission and its associated astroglial regulation in the hippocampus.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/citologia , Região CA1 Hipocampal/citologia , Senescência Celular/fisiologia , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Masculino , Ratos , Ratos Wistar
20.
Artigo em Inglês | MEDLINE | ID: mdl-23230430

RESUMO

Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA