Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 43(5): 863-877, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549907

RESUMO

Lumateperone is indicated for the treatment of schizophrenia in adults and for depressive episodes associated with bipolar I or II disorder (bipolar depression) in adults, as monotherapy and as adjunctive therapy with lithium or valproate (Calabrese et al., 2021). It is currently under evaluation for the treatment of major depressive disorder (www.ClinicalTrials.gov). Lumateperone acts by selectively modulating serotonin, dopamine, and glutamate neurotransmission in the brain. However, other mechanisms could be involved in the actions of lumateperone, and because of the connection between the immune system and psychiatric health, we hypothesized that lumateperone might improve symptoms of depression, at least in part, by normalizing pathologic inflammation. Here, we show that in male and female C57BL/6 mice subjected to an acute immune challenge, lumateperone reduced aberrantly elevated levels of key proinflammatory cytokines (e.g., IL-1ß, IL-6, and TNF-α) in both brain and serum; lumateperone also reduced proinflammatory cytokines in male mice under acute behavioral stress. Further, we demonstrate that lumateperone altered key genes/pathways involved in maintaining tissue integrity and supporting blood-brain barrier function, such as claudin-5 and intercellular adhesion molecule 1. In addition, in acutely stressed male Sprague Dawley rats, lumateperone conferred anxiolytic- and antianhedonic-like properties while enhancing activity in the mammalian target of rapamycin complex 1 pathway in the PFC. Together, our preclinical findings indicate that lumateperone, in addition to its ability to modulate multiple neurotransmitter systems, could also act by reducing the impact of acute inflammatory challenges.SIGNIFICANCE STATEMENT Lumateperone is indicated in adults to treat schizophrenia and depressive episodes associated with bipolar I or II disorder, as monotherapy and adjunctive therapy with lithium or valproate. Because aberrant immune system activity is associated with increased depressive symptoms, the relationship between lumateperone and immune function was studied. Here, lumateperone reduced the levels of proinflammatory cytokines that were increased following an immune challenge or stress in mice. Additionally, lumateperone altered genes and pathways that maintain blood-brain barrier integrity, restored an index of blood-brain barrier function, reduced anxiety-like behavior in rodents, and enhanced mammalian target of rapamycin complex 1 pathway signaling in the PFC. These results highlight the anti-inflammatory actions of lumateperone and describe how lumateperone may reduce immune pathophysiology, which is associated with depressive symptoms.


Assuntos
Transtorno Depressivo Maior , Ratos , Masculino , Feminino , Camundongos , Animais , Transtorno Depressivo Maior/metabolismo , Lítio , Ácido Valproico , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Serina-Treonina Quinases TOR , Mamíferos
2.
J Pharmacol Exp Ther ; 378(2): 173-183, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34099502

RESUMO

Diminished nitric oxide-cGMP-mediated relaxation plays a crucial role in cardiovascular aging, leading to decreased vasodilation, vascular hypertrophy and stiffening, and ultimately, cardiovascular dysfunction. Aging is the time-related worsening of physiologic function due to complex cellular and molecular interactions, and it is at least partly driven by DNA damage. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in Ercc1Δ/- mice provides us an efficient tool to accelerate vascular aging, explore mechanisms, and test potential treatments. Previously, we identified the cGMP-degrading enzyme phosphodiesterase 1 as a potential treatment target in vascular aging. In the present study, we studied the effect of acute and chronic treatment with ITI-214, a selective phosphodiesterase 1 inhibitor on vascular aging features in Ercc1Δ/- mice. Compared with wild-type mice, Ercc1Δ/- mice at the age of 14 weeks showed decreased reactive hyperemia, diminished endothelium-dependent and -independent responses of arteries in organ baths, carotid wall hypertrophy, and elevated circulating levels of inflammatory cytokines. Acute ITI-214 treatment in organ baths restored the arterial endothelium-independent vasodilation in Ercc1Δ/- mice. An 8-week treatment with 100 mg/kg per day ITI-214 improved endothelium-independent relaxation in both aorta and coronary arteries, at least partly restored the diminished reactive hyperemia, lowered the systolic and diastolic blood pressure, normalized the carotid hypertrophy, and ameliorated inflammatory responses exclusively in Ercc1Δ/- mice. These findings suggest phosphodiesterase 1 inhibition would provide a powerful tool for nitric oxide-cGMP augmentation and have significant therapeutic potential to battle arteriopathy related to aging. SIGNIFICANCE STATEMENT: The findings implicate the key role of phosphodiesterase 1 in vascular function and might be of clinical importance for the prevention of mortalities and morbidities related to vascular complications during aging, as well as for patients with progeria that show a high risk of cardiovascular disease.


Assuntos
Diester Fosfórico Hidrolases , Animais , Endotélio Vascular , Camundongos
3.
J Neurosci ; 36(23): 6199-212, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277799

RESUMO

UNLABELLED: Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABAA receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies. SIGNIFICANCE STATEMENT: In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and significantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the potassium-chloride cotransporter KCC2 and GABAA receptors, undergo remarkable fluctuations within vestibular nuclei (VN), strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspectives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de GABA-A/genética , Simportadores/genética , Núcleos Vestibulares/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Carbazóis/farmacologia , Gatos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Neurônios Colinérgicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Lateralidade Funcional , Neurônios GABAérgicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Alcaloides Indólicos/farmacologia , Locomoção , Masculino , Neurogênese/efeitos dos fármacos , Nistagmo Patológico/fisiopatologia , Fosfopiruvato Hidratase/metabolismo , Postura , Receptores de GABA-A/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Simportadores/metabolismo , Núcleos Vestibulares/efeitos dos fármacos , Núcleos Vestibulares/lesões , Cotransportadores de K e Cl-
4.
Neurobiol Dis ; 82: 254-261, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26102021

RESUMO

Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants.


Assuntos
Antidepressivos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor Muscarínico M1/metabolismo , Escopolamina/farmacologia , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Doença Crônica , Sacarose Alimentar , Modelos Animais de Doenças , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Microinjeções , Complexos Multiproteicos/metabolismo , Antagonistas Muscarínicos/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Receptor Muscarínico M1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Sulfonamidas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tiadiazóis/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
5.
J Neurosci ; 33(39): 15555-66, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068822

RESUMO

Strong reactive cell proliferation occurs in the vestibular nuclei after unilateral vestibular neurectomy (UVN). Most of the newborn cells survive, differentiate into glial cells and neurons with GABAergic phenotype, and have been reported to contribute to recovery of the posturo-locomotor functions in adult cats. Because the GABAergic system modulates vestibular function recovery and the different steps of neurogenesis in mammals, we aimed to examine in our UVN animal model the effect of chronic infusion of GABA(A) receptor (R) agonist and antagonist in the vestibular nuclei. After UVN and one-month intracerebroventricular infusions of saline, GABA(A)R agonist (muscimol) or antagonist (gabazine), cell proliferation and differentiation into astrocytes, microglial cells, and neurons were revealed using immunohistochemical methods. We also determined the effects of these drug infusions on the recovery of posturo-locomotor and oculomotor functions through behavioral tests. Our results showed that surprisingly, one month after UVN, newborn cells did not survive in the UVN-muscimol group whereas the number of GABAergic pre-existent neurons increased, and the long-term behavioral recovery of the animals was drastically impaired. Conversely, a significant number of newborn cells survived up to 1 month in the UVN-gabazine group whereas the astroglial population increased, and these animals showed the fastest recovery in behavioral functions. This study reports for the first time that GABA plays multiple roles, ranging from beneficial to detrimental on the different steps of a functional postlesion neurogenesis and further, strongly influences the time course of vestibular function recovery.


Assuntos
Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/citologia , Muscimol/farmacologia , Neurogênese , Piridazinas/farmacologia , Núcleos Vestibulares/citologia , Animais , Astrócitos/citologia , Gatos , Proliferação de Células , Denervação , Movimentos Oculares , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Equilíbrio Postural , Nervo Vestibular/cirurgia , Núcleos Vestibulares/efeitos dos fármacos , Núcleos Vestibulares/fisiologia
6.
Med Sci (Paris) ; 27(6-7): 605-13, 2011.
Artigo em Francês | MEDLINE | ID: mdl-21718644

RESUMO

The adult mammal brain is mostly considered as non-neurogenic, except in the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus, where ongoing neurogenesis occurs. However, anti-neurogenic influences can be removed in pathological conditions or after specific injury. That is what happens in a model of unilateral vestibular neurectomy (UVN) that mimics human pathology in adult cats. We showed for the first time that a UVN promoted an intense reactive cell proliferation in the deafferented vestibular nuclei located in the brainstem. The new cells survived up to one month, differentiated into glial cells - microglia or astrocytes - or GABAergic neurons, so highlighting a GABAergic neurogenesis. Surprisingly, we further showed that post-UVN reactive cell proliferation contributed successfully to fine restoration of vestibular posturo-locomotor functions. In conclusion, these pioneering studies bring new pieces of a promising puzzle in both stem cell and vestibular therapy domains.


Assuntos
Neurogênese , Neurônios/citologia , Regeneração/fisiologia , Núcleos Vestibulares/citologia , Fatores Etários , Animais , Axotomia , Gatos , Diferenciação Celular , Divisão Celular , Sobrevivência Celular , Replicação do DNA , Glutamato Descarboxilase/análise , Humanos , Neurônios/química , Recuperação de Função Fisiológica , Doenças Vestibulares/etiologia , Doenças Vestibulares/fisiopatologia , Doenças Vestibulares/terapia , Nervo Vestibular/lesões , Nervo Vestibular/fisiologia , Núcleos Vestibulares/lesões , Núcleos Vestibulares/patologia , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/fisiologia
7.
Oxid Med Cell Longev ; 2021: 2308317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504640

RESUMO

Persistently unrepaired DNA damage has been identified as a causative factor for vascular ageing. We have previously shown that a defect in the function or expression of the DNA repair endonuclease ERCC1 (excision repair cross complement 1) in mice leads to accelerated, nonatherosclerotic ageing of the vascular system from as early as 8 weeks after birth. Removal of ERCC1 from endothelial alone partly explains this ageing, as shown in endothelial-specific Ercc1 knockout mice. In this study, we determined vascular ageing due to DNA damage in vascular smooth muscle cells, as achieved by smooth muscle-selective genetic removal of ERCC1 DNA repair in mice (SMC-KO: SM22αCre+ Ercc1fl/-). Vascular ageing features in SMC-KO and their wild-type littermates (WT: SM22αCre+ Ercc1fl/+) were examined at the age of 14 weeks and 25 weeks. Both SMC-KO and WT mice were normotensive. Compared to WT, SMC-KO showed a reduced heart rate, fractional shortening, and cardiac output. SMC-KO showed progressive features of nonatherosclerotic vascular ageing as they aged from 14 to 25 weeks. Decreased subcutaneous microvascular dilatation and increased carotid artery stiffness were observed. Vasodilator responses measured in aortic rings in organ baths showed decreased endothelium-dependent and endothelium-independent responses, mostly due to decreased NO-cGMP signaling. NADPH oxidase 2 and phosphodiesterase 1 inhibition improved dilations. SMC-KO mice showed elevated levels of various cytokines that indicate a balance shift in pro- and anti-inflammatory pathways. In conclusion, SMC-KO mice showed a progressive vascular ageing phenotype in resistant and conduit arteries that is associated with cardiac remodeling and contractile dysfunction. The changes induced by DNA damage might be limited to VSMC but eventually affect EC-mediated responses. The fact that NADPH oxidase 2 as wells as phosphodiesterase 1 inhibition restores vasodilation suggests that both decreased NO bioavailability and cGMP degradation play a role in local vascular smooth muscle cell ageing induced by DNA damage.


Assuntos
Dano ao DNA , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
8.
Am J Psychiatry ; 176(5): 388-400, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606046

RESUMO

OBJECTIVE: The N-methyl-d-aspartate receptor antagonist ketamine produces rapid and sustained antidepressant actions even in patients with treatment-resistant depression. Vascular endothelial growth factor (VEGF) has been implicated in the effects of conventional monoamine-based antidepressants, but the role of VEGF in the rapid antidepressant actions of ketamine remains unclear. The authors examined whether neuronal VEGF signaling in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant actions of ketamine. METHODS: The authors used a combination of approaches, including conditional, neuron-specific knockout of VEGF or its receptor, Flk-1; antibody neutralization; viral-mediated knockdown of Flk-1; and pharmacological inhibitors. Further in vitro and in vivo experiments were performed to examine whether neuronal VEGF signaling was required for the neurotrophic and synaptogenic actions of ketamine that underlie its behavioral actions. RESULTS: The behavioral actions of systemic ketamine are blocked by forebrain excitatory neuron-specific deletion of either VEGF or Flk-1 or by intra-mPFC infusion of a VEGF neutralizing antibody. Moreover, intra-mPFC infusions of VEGF are sufficient to produce rapid ketamine-like behavioral actions, and these effects are blocked by neuron-specific Flk-1 deletion. The results also show that local knockdown of Flk-1 in mPFC excitatory neurons in adulthood blocks the behavioral effects of systemic ketamine. Moreover, inhibition of neuronal VEGF signaling blocks the neurotrophic and synaptogenic effects of ketamine. CONCLUSIONS: Together, these findings indicate that neuronal VEGF-Flk-1 signaling in the mPFC plays an essential role in the antidepressant actions of ketamine.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Técnicas In Vitro , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Front Pharmacol ; 7: 281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630564

RESUMO

While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.

10.
Neuropsychopharmacology ; 41(7): 1874-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26658303

RESUMO

Depression and type 2 diabetes (T2D) are highly comorbid disorders that carry a large public health burden. However, there is a clear lack of knowledge of the neural pathological pathways underlying these illnesses. The present study aims to elucidate the molecular mechanisms by which a diet rich in fat can cause multiple complications in the brain, thereby affecting intracellular signaling and gene expression that underlie anxiety and depressive behaviors. The results show that a high-fat diet (HFD; ~16 weeks) causes anxiety and anhedonic behaviors. Importantly, the results also show that 4 months of HFD causes disruption of intracellular cascades involved in synaptic plasticity and insulin signaling/glucose homeostasis (ie, Akt, extracellular signal-regulated kinase (ERK), P70S6K), as well as increased corticosterone levels and activation of the innate immune system, including elevation of inflammatory cytokines (ie, IL-6, IL-1ß, TNFα). Interestingly, the rapid acting antidepressant ketamine reverses the behavioral deficits caused by HFD and activates ERK and P70S6 kinase signaling in the prefrontal cortex. In addition, we found that pharmacological blockade of the innate immune inflammasome system by repeated administration of an inhibitor of the purinergic P2X7 receptor blocks the anxiety caused by HFD. Together these studies further elucidate the signaling pathways that underlie chronic HFD exposure on anxiety and depressive behaviors, and identify novel therapeutic targets for patients with metabolic disorder or T2D who suffer from anxiety and depression.


Assuntos
Anedonia/efeitos dos fármacos , Ansiedade , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/etiologia , Animais , Ansiedade/complicações , Ansiedade/etiologia , Ansiedade/patologia , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Corticosterona/sangue , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/farmacologia , Hiperglicemia/induzido quimicamente , Masculino , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
11.
Biol Psychiatry ; 80(1): 12-22, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831917

RESUMO

BACKGROUND: The mechanisms underlying stress-induced inflammation that contribute to major depressive disorder are unknown. We examine the role of the adenosine triphosphate (ATP)/purinergic type 2X7 receptor (P2X7R) pathway and the NLRP3 (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome in interleukin (IL)-1ß and depressive behavioral responses to stress. METHODS: The influence of acute restraint stress on extracellular ATP, glutamate, IL-1ß, and tumor necrosis factor alpha in hippocampus was determined by microdialysis, and the influence of acute restraint stress on the NLRP3 inflammasome was determined by western blot analysis. The influence of P2X7R antagonist administration on IL-1ß and tumor necrosis factor alpha and on anxiety and depressive behaviors was determined in the chronic unpredictable stress rodent model. The role of the NLRP3 inflammasome was determined by analysis of Nlrp3 null mice. RESULTS: Acute restraint stress rapidly increased extracellular ATP, an endogenous agonist of P2X7R; the inflammatory cytokine IL-1ß; and the active form of the NLRP3 inflammasome in the hippocampus. Administration of a P2X7R antagonist completely blocked the release of IL-1ß and tumor necrosis factor alpha, another stress-induced cytokine, and activated NLRP3. Moreover, P2X7R antagonist administration reversed the anhedonic and anxiety behaviors caused by chronic unpredictable stress exposure, and deletion of the Nlrp3 gene rendered mice resistant to development of depressive behaviors caused by chronic unpredictable stress. CONCLUSIONS: These findings demonstrate that psychological "stress" is sensed by the innate immune system in the brain via the ATP/P2X7R-NLRP3 inflammasome cascade, and they identify novel therapeutic targets for the treatment of stress-related mood disorders and comorbid illnesses.


Assuntos
Trifosfato de Adenosina/metabolismo , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anedonia/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/imunologia , Depressão/etiologia , Depressão/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Agonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/imunologia
12.
Neuropsychopharmacology ; 40(9): 2066-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25759300

RESUMO

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites. The basal dendrites of layer V cells receive an excitatory input from pyramidal cells of the basolateral amygdala (BLA), neurons that are activated by the stress hormone CRF. Here we found that CRF induces EPSCs in PFC layer V cells and that ketamine enhanced this effect through the mammalian target of rapamycin complex 1 synaptogenic pathway; the CRF-induced EPSCs required an intact BLA input and were generated primarily in basal dendrites. In contrast to its detrimental effects on apical dendritic structure and function, chronic stress did not induce a loss of CRF-induced EPSCs in basal dendrites, thereby creating a relative imbalance in favor of amygdala inputs. The effects of ketamine were complex: ketamine enhanced apical EPSC responses in all mPFC subregions, anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) but enhanced CRF-induced EPSCs only in AC and PL-responses were unchanged in IL, a critical area for suppression of stress responses. We propose that by restoring the strength of apical inputs relative to basal amygdala inputs, especially in IL, ketamine would ameliorate the hypothesized disproportional negative influence of the amygdala in chronic stress and major depression.


Assuntos
Tonsila do Cerebelo/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/lesões , Animais , Dendritos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Sistema Límbico/citologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley
13.
Nat Med ; 20(5): 531-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728411

RESUMO

Major depressive disorder (MDD) affects up to 17% of the population, causing profound personal suffering and economic loss. Clinical and preclinical studies have revealed that prolonged stress and MDD are associated with neuronal atrophy of cortical and limbic brain regions, but the molecular mechanisms underlying these morphological alterations have not yet been identified. Here, we show that stress increases levels of REDD1 (regulated in development and DNA damage responses-1), an inhibitor of mTORC1 (mammalian target of rapamycin complex-1; ref. 10), in rat prefrontal cortex (PFC). This is concurrent with a decrease in phosphorylation of signaling targets of mTORC1, which is implicated in protein synthesis-dependent synaptic plasticity. We also found that REDD1 levels are increased in the postmortem PFC of human subjects with MDD relative to matched controls. Mutant mice with a deletion of the gene encoding REDD1 are resilient to the behavioral, synaptic and mTORC1 signaling deficits caused by chronic unpredictable stress, whereas viral-mediated overexpression of REDD1 in rat PFC is sufficient to cause anxiety- and depressive-like behaviors and neuronal atrophy. Taken together, these postmortem and preclinical findings identify REDD1 as a critical mediator of the atrophy of neurons and depressive behavior caused by chronic stress exposure.


Assuntos
Transtornos de Ansiedade/genética , Transtorno Depressivo Maior/genética , Sinapses/patologia , Fatores de Transcrição/genética , Animais , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/patologia , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
14.
PLoS One ; 6(8): e22262, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853029

RESUMO

Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.


Assuntos
Envelhecimento/patologia , Comportamento Animal/fisiologia , Neurogênese , Recuperação de Função Fisiológica/fisiologia , Núcleos Vestibulares/fisiopatologia , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Gatos , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Fatores de Tempo , Núcleos Vestibulares/enzimologia , Núcleos Vestibulares/patologia , Vestíbulo do Labirinto/fisiopatologia
15.
Ann N Y Acad Sci ; 1164: 268-78, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19645911

RESUMO

Most patients with unilateral vestibular loss exhibit a similar static and dynamic vestibular syndrome consisting of vestibulo-ocular, posturolocomotor, and perceptive deficits. This vestibular syndrome recovers more or less completely and more or less rapidly over time. One open question is whether recovery mechanisms differ according to vestibular pathology and/or patients. It is reported here (1) data from three different cat models of unilateral vestibular loss reproducing vestibular pathology with sudden (unilateral vestibular neurectomy [UVN] model), gradual (unilateral labyrinthectomy [UL] model), or reversible (tetrodotoxine [TTX]) model) loss of vestibular function, and (2) clinical observations in a population of unilateral vestibular loss patients suffering the same pathology (Menière's disease). Animal models show that time courses and mechanisms of recovery depend on the type of vestibular deafferentation, and clinical findings show that Menière's patients compensate their postural and perceptive deficits using different vicarious processes. Taken together, results point to a more complex picture of compensation after unilateral vestibular loss, which cannot be reduced either to a common recovery mechanism or to a single process identical for all individuals. These findings should guide physiotherapists in treatment and rehabilitation for vestibular deficits.


Assuntos
Modelos Animais de Doenças , Doenças Vestibulares/fisiopatologia , Animais , Gatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA