Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(5): 055603, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520423

RESUMO

Nanostructuration and self-ordering of semiconducting organic materials are required to fabricate highly efficient photovoltaic and photoemissive devices. In this work, we investigated the combined effect of melt-assisted template processing and self-ordering of high purity regio-regular poly (3-hexylthiophene) (P3HT) to obtain nanofibers of P3HT and of P3HT-single-walled carbon nanotubes (SWNT) nanocomposites. An original ordering of the polymer and the carbon nanotubes within the nanofibers, as well as their surprising anisotropic photoluminescent properties were determined by vibrational and optical spectroscopy. It was attributed to the combined effect of the melt-assisted wetting confined within alumina nanopores, altogether with the self-organization of both P3HT chains on the one hand, and of the P3HT charged with SWNT on the other hand. It is proposed that the well-ordered regio-regular P3HT matrix orientation is promoted by the interaction with the alumina pore surface and the 1D confinement. For the composite case, the P3HT matrix imposes additionally a preferential orientation of the SWNT transversal to the nanofiber axis. This original organization is responsible for the unexpected polarization of the composite nanofibers photoluminescence. This work opens the way to alternative methods for tackling challenges of nanofabrication to obtain more efficient optoelectronic nanodevices.

3.
Langmuir ; 29(5): 1627-33, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23293950

RESUMO

This work presents a simple method to generate ordered chromophore/dispersant nanoarrays through a pore-filling process for a nanoporous polymer template to enhance chromophore luminescence. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy reveal that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of the template are completely filled by the chromophore/dispersant mixture. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of chromophore and dispersant, that is, the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform IR spectroscopy combining with grazing incident wide-angle X-ray diffraction. The enhanced luminescence of the chromophore/dispersant nanoarrays driven by the nanoscale spatial effect is highly promising for use in designing luminescent nanodevices.


Assuntos
Luminescência , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Pirenos/química , Medições Luminescentes , Tamanho da Partícula , Porosidade , Propriedades de Superfície
4.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

5.
Appl Spectrosc ; 74(7): 780-790, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32452210

RESUMO

This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and 25× better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.

6.
Appl Spectrosc ; 73(8): 902-909, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30916988

RESUMO

Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical diffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimization. IPLS's potential for super-resolution is illustrated on numerically generated test images. Its resolving power is demonstrated on Raman spectroscopic data of a polymer nanowire sample. Comparison to atomic force microscopy data of the same sample substantiates that the presented method is a promising technique for analyzing nanomaterial samples.

7.
J Phys Chem B ; 110(46): 23228-33, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107170

RESUMO

Magnetic susceptibility measurements on conducting polyaniline and polypyrrole nanostructures with different dopant type and doping level as functions of temperature and magnetic field are reported. The susceptibility data cannot be simply described as Curie-like susceptibility at lower temperatures and temperature-independent Pauli-like susceptibility at higher temperatures; some unusual transitions are observed in the temperature dependence of susceptibility, for example, paramagnetic susceptibility decreases gradually with lowering temperature, which suggests the coexistence of polarons and spinless bipolarons and possible formation of bipolarons with changing temperature or doping level. In particular, it is found that the direct current magnetic susceptibilities are strongly dependent on applied magnetic field, dopant type, and doping level.

8.
Dalton Trans ; 45(1): 237-45, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26599524

RESUMO

New luminescent poly(methylmethacrylate) (PMMA) nanocomposites with high content of different hexanuclear octahedral cluster building blocks, namely [Mo6I8(C2F5COO6)](2-), [Re6Se8(CN)6](4-) and [W6Cl14](2-) have been prepared by free-radical polymerisation. To do so, cluster complexes bearing a polymerisable ammonium counter-cation have been synthesised. In this way, we demonstrate that ionic assembling is a powerful tool to functionalise easily any type of anionic cluster units to be introduced in a PMMA organic matrix. All samples remain homogeneous, stable during several months, and retain the luminescence properties of the cluster precursor.

9.
Beilstein J Nanotechnol ; 6: 1138-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171290

RESUMO

The mechanisms that control the photophysics of composite films made of a semiconducting conjugated polymer (poly(paraphenylene vinylene), PPV) mixed with single-walled carbon nanotubes (SWNT) up to a concentration of 64 wt % are determined by using photoexcitation techniques and density functional theory. Charge separation is confirmed experimentally by rapid quenching of PPV photoluminescence and changes in photocurrent starting at relatively low concentrations of SWNT. Calculations predict strong electronic interaction between the polymer and the SWNT network when nanotubes are semiconducting.

10.
Nanoscale Res Lett ; 10(1): 475, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646688

RESUMO

Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors.

11.
Nanoscale ; 6(10): 5309-14, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24700117

RESUMO

We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm(-1) by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.

12.
Nat Commun ; 5: 5842, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519052

RESUMO

Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.

13.
ACS Nano ; 7(4): 2977-87, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23477667

RESUMO

We report a general and simple approach to take control of the color of light-emitting two-luminophore hybrid nanowires (NWs). Our strategy is based on the spatial control at the nanoscale (coaxial geometry) and the spectral selection of the two kinds of luminophores in order to restrict complex charge and energy transfers. Thus, it is possible to control the color of the photoluminescence (PL) as an interpolation of the CIE (Commission Internationale de l'Eclairage) coordinates of each luminophore. For this purpose, we selected a green-emitting semiconducting polymer and a red-emitting hexanuclear metal cluster compound, (n-Bu4N)2Mo6Br8F6, dispersed in a poly(methyl-methacrylate) (PMMA) matrix. The great potential and the versatility of this strategy have been demonstrated for two configurations. First, a yellow PL with a continuous change along the nanowire has been evidenced when the proportion of the PPV shell versus the nanocomposite core, that is, the green/red volumic ratio, progressively shifts from 1:2 to 1:5. Second, an extremely abrupt change in the PL color with red-green-yellow segments has been achieved. A simple model corroborates the effectiveness of this strategy. PL excitation and time-resolved experiments also confirm that no significant charge and energy transfers are involved. The two-luminophore hybrid nanowires may find widespread nanophotonic applications in multicolor emitting sources, lasers and chemical and biological sensors.


Assuntos
Cor , Medições Luminescentes/métodos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação
14.
Beilstein J Nanotechnol ; 3: 846-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23365798

RESUMO

We report on the synthesis and magnetic characterization of ultralong (1 cm) arrays of highly ordered coaxial nanowires with nickel cores and graphene stacking shells (also known as metal-filled carbon nanotubes). Carbon-containing nickel nanowires are first grown on a nanograted surface by magnetron sputtering. Then, a post-annealing treatment favors the metal-catalyzed crystallization of carbon into stacked graphene layers rolled around the nickel cores. The observed uniaxial magnetic anisotropy field oriented along the nanowire axis is an indication that the shape anisotropy dominates the dipolar coupling between the wires. We further show that the thermal treatment induces a decrease in the coercivity of the nanowire arrays. This reflects an enhancement of the quality of the nickel nanowires after annealing attributed to a decrease of the roughness of the nickel surface and to a reduction of the defect density. This new type of graphene-ferromagnetic-metal nanowire appears to be an interesting building block for spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA