Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Atmos Environ (1994) ; 2442021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414674

RESUMO

Understanding the drivers for high ozone (O3) and atmospheric particulate matter (PM) concentrations is a pressing issue in urban air quality, as this understanding informs decisions for control and mitigation of these key pollutants. The Houston, TX metropolitan area is an ideal location for studying the intersection between O3 and atmospheric secondary organic carbon (SOC) production due to the diversity of source types (urban, industrial, and biogenic) and the on- and off-shore cycling of air masses over Galveston Bay, TX. Detailed characterization of filter-based samples collected during Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Houston field experiment in September 2013 were used to investigate sources and composition of organic carbon (OC) and potential relationships between daily maximum 8 h average O3 and PM. The current study employed a novel combination of chemical mass balance modeling defining primary (i.e. POC) versus secondary (i.e. SOC) organic carbon and radiocarbon (14C) for apportionment of contemporary and fossil carbon. The apportioned sources include contemporary POC (biomass burning [BB], vegetative detritus), fossil POC (motor vehicle exhaust), biogenic SOC and fossil SOC. The filter-based results were then compared with real-time measurements by aerosol mass spectrometry. With these methods, a consistent urban background of contemporary carbon and motor vehicle exhaust was observed in the Houston metropolitan area. Real-time and filter-based characterization both showed that carbonaceous aerosols in Houston was highly impacted by SOC or oxidized OC, with much higher contributions from biogenic than fossil sources. However, fossil SOC concentration and fractional contribution had a stronger correlation with daily maximum 8 h average O3, peaking during high PM and O3 events. The results indicate that point source emissions processed by on- and off-shore wind cycles likely contribute to peak events for both PM and O3 in the greater Houston metropolitan area.

2.
Sensors (Basel) ; 16(10)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27754370

RESUMO

This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O3) and nitrogen dioxide (NO2). The performance evaluation showed that the CairClip O3/NO2 sensor provided a consistent measurement response to that of reference monitors (r² = 0.79 in Houston; r² = 0.72 in Denver) whereas the CairClip NO2 sensor measurements showed no agreement to reference measurements. The CairClip O3/NO2 sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38874903

RESUMO

Communities near transportation sources can be impacted by higher concentrations of particulate matter (PM) and other air pollutants. Few studies have reported on air quality in complex urban environments with multiple transportation sources. To better understand these environments, the Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) was conducted in three neighborhoods in Southeast Kansas City, Kansas. This area has several emissions sources including transportation (railyards, vehicles, diesel trucks), light industry, commercial facilities, and residential areas. Stationary samples were collected for 1-year (October 24, 2017 to October 312,018) at six sites using traditional sampling methods and lower-cost air sensor packages. This work examines PM less than 2.5 µm in diameter (PM2.5), black carbon (BC), and trace metals data collected during KC-TRAQS. PM2.5 filter samples showed the highest 24-h mean concentrations (9.34 µg/m3) at the sites located within 20-50 m of the railyard. Mean 24-h PM2.5 concentrations, ranging from 7.96 to 9.34 µg/m3, at all sites were lower than that of the nearby regulatory site (9.83µµg/m3). Daily maximum PM2.5 concentrations were higher at the KC-TRAQS sites (ranging from 25.31 to 43.76 µg/m3) compared to the regulatory site (20.50 µg/m3), suggesting short-duration impacts of localized emissions sources. Across the KC-TRAQS sites, 24-h averaged PM2.5 concentrations from the sensor package (p-POD) ranged from 3.24 to 5.69 µg/m3 showing that, out-of-the-box, the PM sensor underestimated the reference concentrations. KC-TRAQS was supplemented by elemental and organic carbon (EC/OC) and trace metal analysis of filter samples. The EC/OC data suggested the presence of secondary organic aerosol formation, with highest mean concentrations observed at the site within 20 m of the railyard. Trace metals data showed daily, monthly, and seasonal variations for iron, copper, zinc, chromium, and nickel, with elevated concentrations occurring during the summer at most of the sites. Implication statement This work reports on findings from a year-long air quality study in Southeast Kansas City, Kansas to understand micro-scale air quality in neighborhoods which are impacted by multiple emissions sources such as transportation sources (including a large railyard operation), light industry, commercial facilities, and residential areas. Fixed-site measurements were collected with traditional samplers and lower-cost air sensors. This work expands on previously published work providing an overview of KC-TRAQS (Chemosensors, 7, 26, 2019, doi:10.3390/chemosensors7020026), and provides further details specifically on PM2.5, EC/OC, and trace metals analysis of the filter samples collected in the study area. While dozens of studies have reported on air quality near roadways, this work will provide more information on air quality near other transportation sources in particular railyards. This work can also inform additional field studies near railyards and promote the use and evaluation of newer technologies such as air sensors to collect data near transportation sources.

4.
J Air Waste Manag Assoc ; 59(11): 1347-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947116

RESUMO

Atmospheric dispersion of particles from mine waste is potentially an important route of human exposure to metals in communities close to active and abandoned mining areas. This study assessed sources of mass and metal concentrations in two size fractions of respirable particles using positive matrix factorization (U.S. Environmental Protection Agency [EPA] PMF 3.0). Weekly integrated samples of particulate matter (PM) 10 microm in aerodynamic diameter or less (PM10) and fine PM (PM2.5, or PM <2.5 microm in aerodynamic diameter) were collected at three monitoring sites, varying distances (0.5-20 km) from mine waste piles, for 58 consecutive weeks in a former lead (Pb) and zinc (Zn) mining region. Mean mass concentrations varied significantly across sites for coarse PM (PM10-PM2.5) but not PM2.5 particles. Concentrations of Pb and Zn significantly decreased with increasing distance from the mine waste piles in PM10-PM2.5 (P < 0.0001) and PM2.5 (P < 0.0005) fractions. Source apportionment analyses deduced five sources contributing to PM2.5 (mobile source combustion, secondary sulfates, mine waste, crustal/soil, and a source rich in calcium [Ca]) and three sources for the coarse fraction (mine waste, crustal/soil, and a Ca-rich source). In the PM2.5 fraction, mine waste contributed 1-6% of the overall mass, 40% of Pb, and 63% of Zn. Mine waste impacts were more apparent in the PM10-PM2.5 fraction and contributed 4-39% of total mass, 88% of Pb, and 97% of Zn. Percent contribution of mine waste varied significantly across sites (P < 0.0001) for both size fractions, with highest contributions in the site closest to the mine waste piles. Seasonality, wind direction, and concentrations of the Ca-rich source were also associated with levels of ambient aerosols from the mine waste source. Scanning electron microscopy results indicated that the PMF-identified mine waste source is mainly composed of Zn-Pb agglomerates on crustal particles in the PM10-PM2.5 fraction. In conclusion, the differential impacts of mine waste on respirable particles by size fraction and location should be considered in future exposure evaluations.


Assuntos
Resíduos Industriais/análise , Metais/análise , Mineração , Material Particulado/análise , Monitoramento Ambiental , Microscopia Eletrônica de Varredura , Oklahoma , Análise de Regressão
5.
Inhal Toxicol ; 20(7): 671-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18464055

RESUMO

Size-fractionated particulate matter (PM) samples were collected from six U.S. cities and chemically analyzed as part of the Multiple Air Pollutant Study. Particles were administered to cultured lung cells and the production of three different proinflammatory markers was measured to explore the association between the health effect markers and PM. Ultrafine, fine, and coarse PM samples were collected between December 2003 and May 2004 over a 4-wk period in each city. Filters were pooled for each city and the PM samples were extracted then analyzed for trace metals, ions, and elemental carbon. Particle extracts were applied to cultured human primary airway epithelial cells, and the secreted levels of interleukin-8 (IL-8), heme oxygenase-1, and cyclooxygenase-2 were measured 1 and 24 h following exposure. Fine PM sources were quantified by the chemical mass balance (CMB) model. The relationship between toxicological measures, PM sources, and individual species were evaluated using linear regression. Ultrafine and fine PM mass were associated with increases in IL-8 (r(2) = .80 for ultrafine and r(2) = .52 for fine). Sources of fine PM and their relative contributions varied across the sampling sites and a strong linear association was observed between IL-8 and secondary sulfate from coal combustion (r(2) = .79). Ultrafine vanadium, lead, copper, and sulfate were also associated with increases in IL-8. Increases in inflammatory markers were not observed for coarse PM mass and source markers. These findings suggest that certain PM size fractions and sources are associated with markers of lung injury or inflammation.


Assuntos
Poluentes Atmosféricos/toxicidade , Ciclo-Oxigenase 2/genética , Células Epiteliais/efeitos dos fármacos , Heme Oxigenase-1/genética , Interleucina-8/genética , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Biomarcadores/metabolismo , Células Cultivadas , Cidades , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/citologia , Metais/análise , Metais/toxicidade , Nitratos/análise , Nitratos/toxicidade , Tamanho da Partícula , Material Particulado/análise , RNA Mensageiro/metabolismo , Sulfatos/análise , Sulfatos/toxicidade , Estados Unidos
6.
Inhal Toxicol ; 19 Suppl 1: 23-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17886046

RESUMO

Identifying the mechanisms by which air pollution causes human health effects is a daunting task. Airsheds around the world are composed of pollution mixtures made up of hundreds of chemical and biological components with an extensive array of physicochemical properties. Current in vivo approaches are limited to the identification of associations between pollutants and health but do not allow for the identification of precise biological mechanisms of effect or the component(s) responsible for the effect. High-throughput in vitro methods using relevant cell culture systems and microarray technology allow researchers to evaluate the mechanisms by which air pollutants affect human health. Our studies have used human airway epithelial cells primarily to test the toxicological effects of particles of different sizes and of various particle components from several cities across the United States. Chemical mass balance analysis is also being used to analyze these samples to establish links between physicochemical properties of particulate matter (PM) and potential sources. The ultimate goal of this line of research is to link the mechanistic data to the PM source data in order to gain an understanding about how the components and sources of PM affect human health.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/química , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Células Cultivadas , Cidades , Regulação da Expressão Gênica/fisiologia , Humanos , Material Particulado/toxicidade , Mucosa Respiratória/metabolismo
7.
Inhal Toxicol ; 19 Suppl 1: 7-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17886044

RESUMO

Hundreds of epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with dose-dependent increases in morbidity and mortality. While early reports focused on PM less than 10 microm (PM10), numerous studies have since shown that the effects can occur with PM stratified into ultrafine (UF), fine (FI), and coarse (CO) size modes despite the fact that these materials differ significantly in both evolution and chemistry. Furthermore the chemical makeup of these different size fractions can vary tremendously depending on location, meteorology, and source profile. For this reason, high-volume three-stage particle impactors with the capacity to collect UF, FI, and CO particles were deployed to four different locations in the United States (Seattle, WA; Salt Lake City, UT; Sterling Forest and South Bronx, NY), and weekly samples were collected for 1 mo in each place. The particles were extracted, assayed for a standardized battery of chemical components, and instilled into mouse lungs (female BALB/c) at doses of 25 and 100 microg. Eighteen hours later animals were euthanized and parameters of injury and inflammation were monitored in the bronchoalveolar lavage fluid and plasma. Of the four locations, the South Bronx coarse fraction was the most potent sample in both pulmonary and systemic biomarkers, with a strong increase in lung inflammatory cells as well as elevated levels of creatine kinase in the plasma. These effects did not correlate with lipopolysaccharide (LPS) or total zinc or sulfate content, but were associated with total iron. Receptor source modeling on the PM2.5 samples showed that the South Bronx sample was heavily influenced by emissions from coal fired power plants (31%) and mobile sources (22%). Further studies will assess how source profiles correlate with the observed effects for all locations and size fractions.


Assuntos
Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Cidades , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/análise , Estados Unidos
8.
Atmos Meas Tech ; 10: 3963-3983, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29682087

RESUMO

Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

9.
Environ Pollut ; 218: 1180-1190, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593352

RESUMO

The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM2.5) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO3- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Material Particulado/química , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Indústrias , Ohio , Material Particulado/análise , Estações do Ano
10.
Int J Environ Res Public Health ; 11(11): 11727-52, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25405595

RESUMO

A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs) that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants and have similar or stronger associations with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total (gasoline + diesel) vehicles to two other cities (Denver, Colorado and Houston, Texas) with different emissions profiles as well as to a different dataset from Atlanta. We compare spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide (CO), nitrogen oxides (NOx) and elemental carbon (EC)) and multipollutant source apportionment factors produced by Positive Matrix Factorization (PMF). Across cities, PMF-derived and IMSI gasoline metrics were most strongly correlated with CO (r = 0.31-0.98), while multipollutant diesel metrics were most strongly correlated with EC (r = 0.80-0.98). NOx correlations with PMF factors varied across cities (r = 0.29-0.67), while correlations with IMSIs were relatively consistent (r = 0.61-0.94). In general, single-pollutant metrics were more correlated with IMSIs (r = 0.58-0.98) than with PMF-derived factors (r = 0.07-0.99). A spatial analysis indicated that IMSIs were more strongly correlated (r > 0.7) between two sites in each city than single pollutant and PMF factors. These findings provide confidence that IMSIs provide a transferable, simple approach to estimate mobile source air pollution in cities with differing topography and source profiles using readily available data.


Assuntos
Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Carbono/análise , Cidades , Monitoramento Ambiental , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Colorado , Georgia , Texas
11.
J Expo Sci Environ Epidemiol ; 23(5): 457-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23250195

RESUMO

Multi-city population-based epidemiological studies have observed significant heterogeneity in both the magnitude and direction of city-specific risk estimates, but tended to focus on regional differences in PM2.5 mortality risk estimates. Interpreting differences in risk estimates is complicated by city-to-city heterogeneity observed within regions due to city-to-city variations in the PM2.5 composition and the concentration of gaseous pollutants. We evaluate whether variations in PM2.5 composition and gaseous pollutant concentrations have a role in explaining the heterogeneity in PM2.5 mortality risk estimates observed in 27 US cities from 1997 to 2002. Within each region, we select the two cities with the largest and smallest mortality risk estimate. We compare for each region the within- and between-city concentrations and correlations of PM2.5 constituents and gaseous pollutants. We also attempt to identify source factors through principal component analysis (PCA) for each city. The results of this analysis indicate that identifying a PM constituent(s) that explains the differences in the PM2.5 mortality risk estimates is not straightforward. The difference in risk estimates between cities in the same region may be attributed to a group of pollutants, possibly those related to local sources such as traffic.


Assuntos
Poluição do Ar , Mortalidade , Material Particulado/toxicidade , Humanos , Análise de Componente Principal , Medição de Risco , Estados Unidos
12.
Environ Sci Technol ; 43(20): 7964-70, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921921

RESUMO

The present investigation, carried out as a case study in a typical major city situated in a European coal combustion region (Krakow, Poland), aims at quantifying the impact on the urban air quality of residential heating by coal combustion in comparison with other potential pollution sources such as power plants, industry, and traffic. Emissions were measured for 20 major sources, including small stoves and boilers, and the particulate matter (PM) was analyzed for 52 individual compounds together with outdoor and indoor PM10 collected during typical winter pollution episodes. The data were analyzed using chemical mass balance modeling (CMB) and constrained positive matrix factorization (CMF) yielding source apportionments for PM10, B(a)P, and other regulated air pollutants namely Cd, Ni, As, and Pb. The results are potentially very useful for planning abatement strategies in all areas of the world, where coal combustion in small appliances is significant. During the studied pollution episodes in Krakow, European air quality limits were exceeded with up to a factor 8 for PM10 and up to a factor 200 for B(a)P. The levels of these air pollutants were accompanied by high concentrations of azaarenes, known markers for inefficient coal combustion. The major culprit for the extreme pollution levels was demonstrated to be residential heating by coal combustion in small stoves and boilers (>50% for PM10 and >90% B(a)P), whereas road transport (<10% for PM10 and <3% for B(a)P), and industry (4-15% for PM10 and <6% for B(a)P) played a lesser role. The indoor PM10 and B(a)P concentrations were at high levels similar to those of outdoor concentrations and were found to have the same sources as outdoors. The inorganic secondary aerosol component of PM10 amounted to around 30%, which for a large part may be attributed to the industrial emission of the precursors SO2 and NOx.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Calefação/efeitos adversos , Metais Pesados/análise , Material Particulado/análise , Poluição do Ar/análise , Carvão Mineral , Habitação , Polônia , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA