Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 189, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167492

RESUMO

BACKGROUND: Antibiotic-resistant Staphylococcus aureus clones have emerged globally over the last few decades. Probiotics have been actively studied as an alternative to antibiotics to prevent and treat S. aureus infections, but identifying new probiotic bacteria, that have antagonistic activity against S. aureus, is difficult since traditional screening strategies are time-consuming and expensive. Here, we describe a new plasmid-based method which uses highly stable plasmids to screen bacteria with antagonistic activity against S. aureus. RESULTS: We have created two recombinant plasmids (pQS1 and pQS3) which carry either gfpbk or mCherry under the control of a S. aureus quorum-sensing (QS) promoter (agrP3). Using this recombinant plasmid pair, we tested 81 bacteria isolated from Holstein dairy milk to identify bacteria that had growth-inhibiting activity against S. aureus and suggest potential explanations for the growth inhibition. The stability test illustrated that pQS1 and pQS3 remained highly stable for at least 24 h in batch culture conditions without selection pressure from antibiotics. This allowed co-culturing of S. aureus with other bacteria. Using the newly developed pQS plasmids, we found commensal bacteria, isolated from raw bovine milk, which had growth-inhibiting activity (n = 13) and quorum-quenching (QQ) activity (n = 13) towards both S. aureus Sa25 (CC97) and Sa27 (CC151). The pQS-based method is efficient and effective for simultaneously screening growth-inhibiting and QQ bacteria against S. aureus on agar media. CONCLUSIONS: It was shown that growth-inhibiting and QQ activity toward pQS plasmid transformants of S. aureus can be simultaneously monitored by observing the zone of growth inhibition and reporter protein inhibition on agar plates. Newly identified antagonistic bacteria and their functional biomolecules are promising candidates for future development of probiotic drugs and prophylactics/therapeutics for bacterial infections including S. aureus. Furthermore, this new approach can be a useful method to find bacteria that can be used to prevent and treat S. aureus infections in both humans and animals.


Assuntos
Antibiose , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Fenômenos Fisiológicos Bacterianos , Técnicas Bacteriológicas/métodos , Staphylococcus aureus/fisiologia , Animais , Antibacterianos/isolamento & purificação , Bactérias/genética , Leite/microbiologia , Plasmídeos/genética
2.
Microbiology (Reading) ; 157(Pt 2): 496-503, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966089

RESUMO

In a collection of 110 clinical isolates of Klebsiella pneumoniae, a single strain, Kp593, was found to exhibit a mutator phenotype with a rifampicin mutation frequency 100-fold higher than the modal value for this species. Complementation experiments with the wild-type MutL, one of the main components of the methyl-directed mismatch repair system, allowed the mutator phenotype to be reversed. Sequencing revealed substitution of the conserved residue Lys307 to Arg and site-directed mutagenesis followed by complementation experiments confirmed the critical role of this mutation. The patient infected with Kp593 relapsed a month later and the strain isolated then, Kp869, was identical to Kp593, as verified by PFGE analysis. Phenotypically, Kp869 colonies were more mucoid than those of Kp593, probably due to increased capsule synthesis as shown by electron microscopy. In addition, Kp869 exhibited a 16-fold higher amoxicillin resistance level related to a 36.4 kb tandem duplication encompassing the chromosomal bla(SHV-11) gene, which was unstable in vitro. These data suggest that the mutator phenotype found in Kp593/Kp869 is associated with beneficial mutations conferring a selective advantage, such as increased virulence factor production and antibiotic resistance. The latter was due to resistance gene duplication, an event rarely described in natural isolates. This is the first description of the in vivo occurrence of gene duplication in a mutator background.


Assuntos
Duplicação Gênica , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Idoso de 80 Anos ou mais , Clonagem Molecular , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Feminino , Teste de Complementação Genética , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Análise de Sequência de DNA , Virulência , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA