Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Br J Cancer ; 122(8): 1146-1157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115576

RESUMO

BACKGROUND: Dysregulation of the metabolome is a hallmark of primary brain malignancies. In this work we examined whether metabolic reprogramming through a multi-targeting approach causes enhanced anti-cancer activity in glioblastoma. METHODS: Preclinical testing of a combined treatment with ONC201/TIC10 and 2-Deoxyglucose was performed in established and primary-cultured glioblastoma cells. Extracellular flux analysis was used to determine real-time effects on OXPHOS and glycolysis. Respiratory chain complexes were analysed by western blotting. Biological effects on tumour formation were tested on the chorioallantoic membrane (CAM). RESULTS: ONC201/TIC10 impairs mitochondrial respiration accompanied by an increase of glycolysis. When combined with 2-Deoxyglucose, ONC201/TIC10 induces a state of energy depletion as outlined by a significant decrease in ATP levels and a hypo-phosphorylative state. As a result, synergistic anti-proliferative and anti-migratory effects were observed among a broad panel of different glioblastoma cells. In addition, this combinatorial approach significantly impaired tumour formation on the CAM. CONCLUSION: Treatment with ONC201/TIC10 and 2-Deoxyglucose results in a dual metabolic reprogramming of glioblastoma cells resulting in a synergistic anti-neoplastic activity. Given, that both agents penetrate the blood-brain barrier and have been used in clinical trials with a good safety profile warrants further clinical evaluation of this therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Imidazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Embrião de Galinha/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Humanos , Fosforilação Oxidativa
2.
Neurochem Res ; 42(12): 3382-3389, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28852934

RESUMO

The sulfone dapsone is an old antibiotic used for the treatment of mycobacterial and protozoal infections. We postulated before that dapsone might possess biological activity exceeding its anti-infectious properties and that it could potentially be repurposed for the treatment of glioma. To test this hypothesis, we treated established and primary cultured glioma cells with dapsone or several dapsone analogues which we previously synthesized (D2-D5) and determined effects on proliferation, anchorage-independent growth and migration. While dapsone and its synthetic analogues D2-D5 displayed only modest anti-proliferative activity, important neoplastic features such as anchorage-independent growth, clonogenic survival and directed migration were significantly inhibited by dapsone treatment. Moreover, dapsone analogues D3, D4 and D5 yielded even enhanced anti-glioma activity against different pro-neoplastic features. Overall these data suggest that dapsone provides activity against glioma which can be further enhanced by molecular modifications. These compounds could potentially serve as a therapeutic adjunct to the treatment of gliomas in a repurposing approach.


Assuntos
Antibacterianos/uso terapêutico , Dapsona/química , Dapsona/farmacologia , Glioma/tratamento farmacológico , Humanos , Interleucina-8/metabolismo , Leucotrieno B4/antagonistas & inibidores , Receptores de Formil Peptídeo/efeitos dos fármacos
3.
J Neurooncol ; 122(1): 21-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524815

RESUMO

The poor prognosis of patients with glioblastoma fuels the search for more effective therapeutic compounds. We previously hypothesised that the neuroleptic olanzapine may enhance antineoplastic effects of temozolomide the standard chemotherapeutic agent used in this disease. This study tested this hypothesis. The anti-proliferative effect of olanzapine was examined by MTT assays and cell count analysis. Soft-agar assays were performed to examine colony-forming ability. In addition, the inhibitory effect of olanzapine on the migratory capacity of U87MG and A172 cells was analyzed by Transwell(®) assays. Moreover, staining for annexin V/propidium iodide or carboxyfluorescein succinimidyl ester was performed prior to flow cytometric analysis in order to better understand the subjacent cellular mechanism. Our initial hypothesis that olanzapine may enhance temozolomide's anti-tumor activity could be confirmed in U87MG and A172 glioblastoma cell lines. Moreover, treatment with olanzapine alone resulted in a marked anti-proliferative effect on U87MG, A172 and two glioma stem-like cells with IC50 values ranging from 25 to 79.9 µM. In U87MG cells, anchorage-independent growth was dose-dependently inhibited. In A172 cells, migration was also shown to be inhibited in a dose-dependent manner. In addition, olanzapine was shown to exert a cell line-dependent pleomorphism with respect to the induction of apoptosis, necrosis and/or cytostasis. Our data show that the neuroleptic olanzapine enhances the anti-tumor activity of temozolomide against glioblastoma cell lines. Moreover, this is the first study to show that olanzapine provides on its own anti-cancer activity in glioblastoma and thus may have potential for repurposing.


Assuntos
Benzodiazepinas/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Sinergismo Farmacológico , Glioblastoma/patologia , Antineoplásicos Alquilantes/farmacologia , Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Dacarbazina/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Olanzapina , Fosfoproteínas/metabolismo , Análise Serial de Proteínas , Temozolomida , Células Tumorais Cultivadas
4.
Front Cell Dev Biol ; 9: 734699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900991

RESUMO

The purpose of this study was to examine whether the imipridone ONC201/TIC10 affects the metabolic and proliferative activity of medulloblastoma cells in vitro. Preclinical drug testing including extracellular flux analyses (agilent seahorse), MTT assays and Western blot analyses were performed in high and low c-myc-expressing medulloblastoma cells. Our data show that treatment with the imipridone ONC201/TIC10 leads to a significant inihibitory effect on the cellular viability of different medulloblastoma cells independent of c-myc expression. This effect is enhanced by glucose starvation. While ONC201/TIC10 decreases the oxidative consumption rates in D458 (c-myc high) and DAOY (c-myc low) cells extracellular acidification rates experienced an increase in D458 and a decrease in DAOY cells. Combined treatment with ONC201/TIC10 and the glycolysis inhibitor 2-Deoxyglucose led to a synergistic inhibitory effect on the cellular viability of medulloblastoma cells including spheroid models. In conclusion, our data suggest that ONC201/TIC10 has a profound anti-proliferative activity against medulloblastoma cells independent of c-myc expression. Metabolic targeting of medulloblastoma cells by ONC201/TIC10 can be significantly enhanced by an additional treatment with the glycolysis inhibitor 2-Deoxyglucose. Further investigations are warranted.

5.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959641

RESUMO

BACKGROUND: Glioblastoma represents the most common primary brain tumor in adults. Despite technological advances, patients with this disease typically die within 1-2 years after diagnosis. In the search for novel therapeutics, drug repurposing has emerged as an alternative to traditional drug development pipelines, potentially facilitating and expediting the transition from drug discovery to clinical application. In a drug repurposing effort, the original CUSP9 and its derivatives CUSP9* and CUSP9v3 were developed as combinations of nine non-oncological drugs combined with metronomic low-dose temozolomide. METHODS: In this work, we performed pre-clinical testing of CUSP9v3 in different established, primary cultured and stem-like glioblastoma models. In addition, eight patients with heavily pre-treated recurrent glioblastoma received the CUSP9v3 regime on a compassionate use basis in a last-ditch effort. RESULTS: CUSP9v3 had profound antiproliferative and pro-apoptotic effects across all tested glioblastoma models. Moreover, the cells' migratory capacity and ability to form tumor spheres was drastically reduced. In vitro, additional treatment with temozolomide did not significantly enhance the antineoplastic activity of CUSP9v3. CUSP9v3 was well-tolerated with the most frequent grade 3 or 4 adverse events being increased hepatic enzyme levels. CONCLUSIONS: CUSP9v3 displays a strong anti-proliferative and anti-migratory activity in vitro and seems to be safe to apply to patients. These data have prompted further investigation of CUSP9v3 in a phase Ib/IIa clinical trial (NCT02770378).

6.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34439278

RESUMO

The purpose of this study was to assess in vitro whether the biological effects of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy are enhanced by inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL in different glioblastoma models. Pre-clinical testing of a microcontroller-based device emitting light of 405 nm wavelength in combination with exposure to 5-ALA (PDT) and the Bcl-2/Bcl-xL inhibitor ABT-263 (navitoclax) was performed in human established and primary cultured glioblastoma cells as well as glioma stem-like cells. We applied cell count analyses to assess cellular proliferation and Annexin V/PI staining to examine pro-apoptotic effects. Western blot analyses and specific knockdown experiments using siRNA were used to examine molecular mechanisms of action. Bcl-2/Bcl-xL inhibition synergistically enhanced apoptosis in combination with PDT. This effect was caspase-dependent. On the molecular level, PDT caused an increased Noxa/Mcl-1 ratio, which was even more pronounced when combined with ABT-263 in a Usp9X-independent manner. Our data showed that Bcl-2/Bcl-xL inhibition increases the response of glioblastoma cells toward photodynamic therapy. This effect can be partly attributed to cytotoxicity and is likely related to a pro-apoptotic shift because of an increased Noxa/Mcl-1 ratio. The results of this study warrant further investigation.

7.
Neurooncol Adv ; 3(1): vdab075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377985

RESUMO

BACKGROUND: The dismal prognosis of glioblastoma (GBM) may be related to the ability of GBM cells to develop mechanisms of treatment resistance. We designed a protocol called Coordinated Undermining of Survival Paths combining 9 repurposed non-oncological drugs with metronomic temozolomide-version 3-(CUSP9v3) to address this issue. The aim of this phase Ib/IIa trial was to assess the safety of CUSP9v3. METHODS: Ten adults with histologically confirmed GBM and recurrent or progressive disease were included. Treatment consisted of aprepitant, auranofin, celecoxib, captopril, disulfiram, itraconazole, minocycline, ritonavir, and sertraline added to metronomic low-dose temozolomide. Treatment was continued until toxicity or progression. Primary endpoint was dose-limiting toxicity defined as either any unmanageable grade 3-4 toxicity or inability to receive at least 7 of the 10 drugs at ≥ 50% of the per-protocol doses at the end of the second treatment cycle. RESULTS: One patient was not evaluable for the primary endpoint (safety). All 9 evaluable patients met the primary endpoint. Ritonavir, temozolomide, captopril, and itraconazole were the drugs most frequently requiring dose modification or pausing. The most common adverse events were nausea, headache, fatigue, diarrhea, and ataxia. Progression-free survival at 12 months was 50%. CONCLUSIONS: CUSP9v3 can be safely administered in patients with recurrent GBM under careful monitoring. A randomized phase II trial is in preparation to assess the efficacy of the CUSP9v3 regimen in GBM.

8.
Cell Oncol (Dordr) ; 42(3): 287-301, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859392

RESUMO

PURPOSE: Anti-apoptotic and pro-migratory phenotypes are hallmarks of neoplastic diseases, including primary brain malignancies. In this work, we examined whether reprogramming of the apoptotic and migratory machineries through a multi-targeting approach would induce enhanced cell death and enhanced inhibition of the migratory capacity of glioblastoma cells. METHODS: Preclinical testing and molecular analyses of combined inhibition of Bcl-2/Bcl-xL and RAC1 were performed in established, primary cultured and stem-like glioblastoma cell systems. RESULTS: We found that the combined inhibition of Bcl-2/Bcl-xL and RAC1 resulted in synergistic pro-apoptotic and anti-migratory effects in a broad range of different glioblastoma cells. At the molecular level, we found that RAC1 inhibition led to a decreased expression of the deubiquitinase Usp9X, followed by a decreased stability of Mcl-1. We also found that the combined inhibition led to a significantly decreased migratory activity and that tumor formation of glioblastoma cells on chorion allantoic membranes of chicken embryos was markedly impaired following the combined inhibition. CONCLUSIONS: Our data indicate that concomitant inhibition of RAC1 and Bcl-2/Bcl-xL induces pro-apoptotic and anti-migratory glioblastoma phenotypes as well as synergistic anti-neoplastic activities. The clinical efficacy of this inhibitory therapeutic strategy warrants further evaluation.


Assuntos
Compostos de Anilina/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sulfonamidas/farmacologia , Ubiquitina Tiolesterase/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação para Baixo/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina Tiolesterase/genética , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Br J Pharmacol ; 176(18): 3681-3694, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222722

RESUMO

BACKGROUND AND PURPOSE: Drug repurposing represents a promising approach to safely accelerate the clinical application of therapeutics with anti-cancer activity. In this study, we examined whether inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL enhances the biological effects of the repurposed CUSP9 regimen in an in vitro setting of glioblastoma. EXPERIMENTAL APPROACH: We applied 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assays to assess cellular proliferation. Annexin V/propidium iodide and tetramethylrhodamine, ethyl ester staining were used to examine apoptosis. Western blotting, RT-PCR, and specific knockdown experiments using siRNA were employed to examine molecular mechanisms of action. KEY RESULTS: Bcl-2/Bcl-xL inhibition exerted synergistic anti-proliferative effects across established, primary cultured, and stem-like glioblastoma cells when combined with CUSP9 which had been reduced to only one tenth of its proposed original concentration (CUSP9-LD). The combination treatment also led to enhanced apoptosis with loss of mitochondrial membrane potential and activation of caspases. On the molecular level, CUSP9-LD counteracted ABT263-mediated up-regulation of Mcl-1. Silencing of Mcl-1 enhanced ABT263-mediated apoptosis which indicates that down-regulation of Mcl-1 is crucial for the induction of cell death by the combination treatment. CONCLUSION AND IMPLICATIONS: These data suggest that Bcl-2/Bcl-xL inhibition enhances the susceptibility of glioblastoma cells towards CUSP9, allowing dramatic dose reduction and potentially decreased toxicity when applied clinically. A clinical trial involving the original CUSP doses (CUSP9v3) is currently ongoing in our institution (NCT02770378). The Bcl-2/Bcl-xL inhibitor ABT263 is in clinical trials and might represent a valuable adjunct to the original CUSP.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno
10.
Oncol Lett ; 16(5): 6181-6187, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344758

RESUMO

Glioblastoma is the most aggressive tumor of the central nervous system and is manifested by diffuse invasion of glioblastoma stem cells into the healthy tissue, chemoresistance and recurrence. Despite aggressive therapy, consisting of maximal surgical resection, radiotherapy and chemotherapy with temozolomide (Temodal®), life expectancy of patients with glioblastoma is typically less than 15 months. In general, natural isothiocyanates isolated from plants of the Cruciferae family are selectively cytotoxic to tumor cells. It has been demonstrated previously that diisothiocyanate-derived mercapturic acids are highly cytotoxic to colon cancer cells. In the present study, the application of diisothiocyanate-derived mercapturic acids led to a decrease in the viability of an established glioblastoma cell line, primary patient-derived sphere-cultured stem cell-enriched cell populations (SCs), and cells differentiated from SCs. Consequently, targeting glioblastoma cells by diisothiocyanate-derived mercapturic acids is a promising approach to restrict tumor cell growth and may be a novel therapeutic intervention for the treatment of glioblastoma.

11.
Anticancer Agents Med Chem ; 14(2): 313-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506460

RESUMO

As chemotherapy with temozolomide is far from providing satisfactory clinical outcomes for patients with glioblastoma, more efficient drugs and drug combinations are urgently needed. The anti-malarial artesunate was previously shown to exert a profound cytotoxic effect on various tumor cell lines including those derived from glioblastoma. In the current study, we sought to examine the antiproliferative effect of a combination of temozolomide and artesunate on two different established human glioblastoma cell lines. The IC50 and IC25 were determined for temozolomide and artesunate in U87MG and A172 glioblastoma cell lines after 144 h of continuous drug exposure. The antiproliferative effect of combining both agents at IC50/IC50 and IC25/IC25 was determined by a cell viability assay. Moreover, necrosis and apoptosis were analyzed by annexin V/PI staining and flow cytometric analysis. In addition, cytostatic effects were examined by carboxyfluorescein diacetate succinimidyl ester staining and subsequent flow cytometry. In both glioblastoma cell lines, artesunate was found to enhance the antiproliferative effect exerted by temozolomide. Moreover, artesunate acted in concert with temozolomide in terms of cytostatic and necrotizing effects. These observations suggest that a combination of artesunate and temozolomide might result in increased cytotoxicity in glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Artesunato , Linhagem Celular Tumoral/efeitos dos fármacos , Dacarbazina/farmacologia , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Necrose , Temozolomida
12.
Mol Cancer Ther ; 12(9): 1783-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832120

RESUMO

Glioblastoma is the most frequent brain tumor of glial origin in adults. With the best available standard-of-care, patients with this disease have a life expectancy of only approximately 15 months after diagnosis. Because the EGF receptor (HER1/EGFR) is one of the most commonly dysregulated oncogenes in glioblastoma, HER1/EGFR-targeted agents, such as erlotinib, were expected to provide a therapeutic benefit. However, their application in the clinical setting failed. Seeking an explanation for this finding, we previously identified several candidate genes for resistance of human glioblastoma cell lines toward erlotinib. On the basis of this panel of genes, we aimed at identifying drugs that synergistically enhance the antiproliferative effect of erlotinib on established and primary glioblastoma cell lines. We found that NSC23766, an inhibitor of RAC1, enhanced the antineoplastic effects of erlotinib in U87MG, T98MG, and A172MG glioblastoma cell lines for the most part in a synergistic or at least in an additive manner. In addition, the synergistic antiproliferative effect of erlotinib and NSC23766 was confirmed in primary cultured cells, indicating a common underlying cellular and molecular mechanism in glioblastoma. Therefore, agents that suppress RAC1 activation may be useful therapeutic partners for erlotinib in a combined targeted treatment of glioblastoma.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Glioblastoma/patologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Aminoquinolinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Pirimidinas/uso terapêutico , Quinazolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA